Câu hỏi:
67 lượt xemBài 2.5 trang 30 Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau trên mặt phẳng tọa độ:
a)
b)
c)
Lời giải
Hướng dẫn giải:
Lời giải
a)
+) Xác định miền nghiệm D1 của bất phương trình y – x < – 1.
- Vẽ đường thẳng d: y – x = – 1.
- Vì 0 – 0 = 0 > – 1 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình y – x < – 1
Do đó miền nghiệm D1 của bất phương trình y – x < – 1 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Miền nghiệm D2 của bất phương trình x > 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và không kể đường thẳng Oy.
+) Miền nghiệm D3 của bất phương trình y < 0 là nửa mặt phẳng bờ Ox chứ điểm (0; – 1) và không kể đường thẳng Ox.
Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
b)
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) và kể cả đường thẳng Ox.
+) Xác định miền nghiệm D3 của bất phương trình 2x + y ≤ 4.
– Vẽ đường thẳng d: 2x + y = 4
- Vì 2.0 + 0 = 0 < 4 nên tọa độ điểm (0; 0) thỏa mãn bất phương trình 2x + y ≤ 4
Do đó miền nghiệm D3 của bất phương trình 2x + y ≤ 4 là nửa mặt phẳng bờ d chứa điểm O(0; 0) và kể cả đường thẳng d.
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tam giác OAB (miền không bị gạch).
c)
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
+) Xác định miền nghiệm D2 của bất phương trình x + y > 5.
– Vẽ đường thẳng d: x + y = 5
- Vì 0 + 0 = 0 < 5 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình x + y > 5
Do đó miền nghiệm D2 của bất phương trình x + y > 5 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Xác định miền nghiệm D3 của bất phương trình x – y < 0.
– Vẽ đường thẳng d’: x – y = 0
- Vì 1 - 0 = 1 > 0 nên tọa độ điểm (1; 0) không thỏa mãn bất phương trình x – y < 0
Do đó miền nghiệm D3 của bất phương trình x – y < 0 là nửa mặt phẳng bờ d’ không chứa điểm (1; 0) và không kể đường thẳng d’.
Vậy miền nghiệm của hệ là miền không bị gạch.