Câu hỏi:
73 lượt xemB. Bài tập
Giải Toán 10 trang 24 Tập 2
Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:
a) 3x2 – 4x + 1;
b) x2 + 2x + 1;
c) – x2 + 3x – 2;
d) – x2 + x – 1.
Lời giải
Hướng dẫn giải:
Lời giải
a) Xét tam thức f(x) = 3x2 – 4x + 1 có ∆' = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = ; x2 = 1.
Ta có bảng xét dấu f(x):
x |
– ∞ 1 + ∞ |
f(x) |
+ 0 – 0 + |
Vậy f(x) > 0 khi và f(x) < 0 khi .
b) Xét tam thức f(x) = x2 + 2x + 1 có ∆' = 12 – 1 . 1 = 0 và a > 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.
c) Xét tam thức f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.
Ta có bảng xét dấu f(x):
x |
– ∞ 1 2 + ∞ |
f(x) |
– 0 + 0 – |
Vậy f(x) < 0 khi x ∈ (– ∞; 1) ∪ (2; + ∞) và f(x) > 0 khi x ∈ (1; 2).
d) Xét tam thức f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi x ∈ ℝ.