Câu hỏi:
57 lượt xemBài 6.17 trang 24 Toán 10 Tập 2: Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi x ∈ ℝ:
x2 + (m + 1)x + 2m + 3.
Lời giải
Hướng dẫn giải:
Lời giải
Xét tam thức f(x) = x2 + (m + 1)x + 2m + 3.
Ta có: ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.
Mặt khác, hệ số a = 1 > 0.
Do đó, để f(x) luôn dương (cùng dấu hệ số a) với mọi x ∈ ℝ thì ∆ < 0
⇔ m2 – 6m – 11 < 0.
Xét tam thức g(m) = m2 – 6m – 11 có ∆'g = (– 3)2 – 1 . (– 11) = 20 > 0 nên g(m) có hai nghiệm m1 = và m2 = .
Vì hệ số ag = 1 > 0 nên ta có bảng xét dấu g(m):
m |
– ∞ + ∞ |
g(m) |
+ 0 – 0 + |
Khi đó g(m) < 0 với mọi m .
Hay ∆ < 0 với mọi m .
Vậy m thì tam thức bậc hai đã cho luôn dương với mọi x ∈ ℝ.