Câu hỏi:

65 lượt xem
Tự luận

 Bài 6.32 trang 28 Toán 10 Tập 2Giải các bất phương trình sau:

a) 2x2 – 3x + 1 > 0;

b) x2 + 5x + 4 < 0;

c) – 3x2 + 12x – 12 ≥ 0;

d) 2x2 + 2x + 1 < 0.

  

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

a) Tam thức bậc hai f(x) = 2x2 – 3x + 1 có ∆ = (– 3)2 – 4 . 2 . 1 = 1 > 0  nên f(x) có hai nghiệm x1 = 12 và x2 = 1.

Mà hệ số a = 2 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                      12                                             + ∞

f(x)

                                      –                            +

Vậy bất phương trình 2x– 3x + 1 > 0 có tập nghiệm là S = ;121;+.

b) Tam thức bậc hai f(x) = x2 + 5x + 4 có ∆ = 52 – 4 . 1 . 4 = 9 > 0 nên f(x) có hai nghiệm x1 = – 4 và x2 = – 1.

Mà hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                     – 4                         – 1                  + ∞

f(x)

                                      –                            +

Vậy bất phương trình x2 + 5x + 4 < 0 có tập nghiệm là S = (– 4; – 1).

c) Tam thức bậc hai f(x) = – 3x2 + 12x – 12 có ∆= 62 – (– 3) . (– 12) = 0 nên f(x) có nghiệm kép x = 2.

Mà hệ số a = – 3 < 0 nên f(x) luôn âm (cùng dấu với a) với mọi x ≠ 2.

Vậy bất phương trình – 3x2 + 12x – 12 ≥ 0 có nghiệm duy nhất x = 2 hay tập nghiệm của bất phương trình là S = {2}.

d) Tam thức bậc hai f(x) = 2x2 + 2x + 1 có ∆= 12 – 2 . 1 = – 1 < 0, hệ số a = 2 > 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là 2x2 + 2x + 1 > 0 với mọi x ∈ ℝ.

Vậy bất phương trình 2x2 + 2x + 1 < 0 vô nghiệm.  

CÂU HỎI HOT CÙNG CHỦ ĐỀ