Câu hỏi:

61 lượt xem
Tự luận

 Giải Toán 10 trang 15 Tập 2

Luyện tập 2 trang 15 Toán 10 Tập 2Vẽ parabol y = 3x– 10x + 7. Từ đó tìm khoảng đồng biến, nghịch biến và giá trị nhỏ nhất của hàm số y = 3x2 – 10x + 7.

  

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

Hệ số a của hàm số y = 3x2 – 10x + 7 là a = 3 > 0 nên parabol quay bề lõm hướng lên trên.

Parabol y = 3x2 – 10x + 7 có:

- Tọa độ đỉnh I53;43;

- Trục đối xứng x=53;

- Giao điểm của đồ thị với trục Oy là A(0; 7).

- Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình 3x2 – 10x + 7 = 0, tức là x = 73 và x = 1 hay parabol cắt trục hoành tại các điểm D(1; 0) và E73;0;

- Điểm đối xứng với điểm A qua trục đối xứng x=53 là B103;7.

Vẽ đường cong đi qua các điểm trên ta được parabol y = 3x2 – 10x + 7.

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

- Đồ thị hàm số đi xuống từ trái qua phải trên khoảng ;53 nên hàm số nghịch biến trên khoảng ;53.

- Đồ thị hàm số đi lên từ trái qua phải trên khoảng 53;+ nên hàm số đồng biến trên khoảng 53;+.

- Điểm thấp nhất của đồ thị là đỉnh I53;43 nên giá trị nhỏ nhất của hàm số là y=43 tại x=53.