25 đề thi thử Toán THPT Quốc gia có lời giải chi tiết (Đề 1)

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Trong không gian Oxyz, cho mặt phẳng P:2xy+5z3=0. Vectơ nào dưới đây là một vectơ pháp tuyến của P ?

A.n3=2;5;3.

B.n4=2;1;5.

C.n1=2;1;5.

D.n2=1;5;3.

Câu 2:

Với a là số thực dương tùy ý, giá trị log4a8  bằng:

A. 2log4a.

B. 2log4a.

C. 32log2a.

D. 4log2a.

Câu 3:

Cho hàm số y=fx  có đồ thị như hình vẽ. Hàm số y=fx  là:

Cho hàm số y=f(x)  có đồ thị như hình vẽ. Hàm số y= f(x)  là: (ảnh 1)

A. y=x4+1.

B. y=x4+2x.

C. y=xx2+1.

D. y=x.

Câu 4:

Một quả bóng tiêu chuẩn được bơm hơi với áp suất trong khoảng 8,5 – 15,6 Psi (Psi: đơn vị đo áp suất thường dùng ở Mỹ). Lúc đầu quả bóng được bơm hơi 90% áp suất tối đa (15,6 Psi) sau mỗi ngày áp suất hơi trong quả bóng giảm đi 1,5% so với ngày trước đó. Hỏi sau tối đa bao nhiêu ngày phải bơm lại bóng để đạt tiêu chuẩn quy định?

Một quả bóng tiêu chuẩn được bơm hơi với áp suất trong khoảng 8,5 – 15,6 Psi (Psi: đơn vị đo áp suất thường dùng ở Mỹ).  (ảnh 1)

A. 36 ngày.

B. 33 ngày.
C. 35 ngày
D. 34 ngày.
Câu 5:

Cho cấp số cộng un  có số hạng đầu u1=3  u6=27 Khi đó công sai d bằng:

A. 7.

B. 5. 
C. 8.
D. 6.
Câu 6:

Cho hàm số y=ax3+bx2+cx+d  có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

Cho hàm số y=ax^3+bx^2+cx+d  có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng? (ảnh 1)

A. a<0,b>0,c>0,d>0.

B. a<0,b<0,c=0,d>0.

C. a>0,b<0,c>0,d>0.

D. a<0,b>0,c=0,d>0.

Câu 7:
Trong không gian Oxyz, cho 3 điểm A(2;1;-1),B(-1;0;4),C_0;-2;-1) . Phương trình mặt phẳng đi qua điểm A và vuông góc với đường thẳng BC là:

A. x2y5z+5=0.

B. x+2y+5z5=0.

C. x2y5=0.

D. x2y5z5=0.

Câu 8:

Cho khối nón có bán kính đáy r = 4, chiều cao h=6  như hình vẽ. Thể tích của khối nón là:

Cho khối nón có bán kính đáy r=4 , chiều cao h= căn bậc hai 6  như hình vẽ. Thể tích của khối nón là: (ảnh 1)

A.16π3.

B. 4π63.

C. 16π6.

D.16π6.3

Câu 9:

Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Có bao nhiêu cách chọn 3 học sinh để tham gia vệ sinh công cộng?

A. 9880.
B. 59280.
C. 2300. 
D. 455.
Câu 10:
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên trục Oz là:

A. N0;3;4.

B. P2;0;4.

C. Q2;0;0.

D.E0;0;4.

Câu 11:
Tính tích phân I=012020exdx. .

A. I=2020ee1.

B. I=2020e.

C. I=2020e1.

D. I=2020e2.

Câu 12:

Cho khối lăng trụ ABC.A’B’C’, mặt bên  có diện tích bằng 10. Khoảng cách đỉnh C đến mặt phẳng ABB'A'  bằng 6. Thể tích khối lăng trụ đã cho bằng:

A. 40.

B. 60.
C. 30
D. 20.
Câu 13:
Cho z =iz + 2020 Số phức liên hợp của số phức z là:

A.1010+1010i.

B. 1010+1010i.

C. 10101010i.

D. 10101010i.

Câu 14:

Cho hàm số y=fx  có bảng biến thiên như hình vẽ bên dưới.

Cho hàm số y=f(x)  có bảng biến thiên như hình vẽ bên dưới. (ảnh 1)

Hàm số đạt cực tiểu tại điểm

A. x=0.

B. x=1

C. x=-1

D. x=-1 và x=3

Câu 15:
Gọi z1,z2  là hai nghiệm phức phương trình z24z+12=0  . Giá trị  1z1+1z2 bằng:

A.13.

B. 13.

C. 16.

D. 16.

Câu 16:

Doraemon có hẹn với các bạn tham dự trận bóng đá, nhưng do ngủ quên nên khi tỉnh dậy thì sắp đến giờ trận đấu bắt đầu. Doraemon dùng chiếc chổi bay với vận tốc vt=6t2+2t50m/s , biết nhà Doraemon cách sân bóng 1600 m. Hỏi sau bao lâu Doraemon đến được sân bóng?

Doraemon có hẹn với các bạn tham dự trận bóng đá, nhưng do ngủ quên nên khi tỉnh dậy  (ảnh 1)

A. 5 giây

B. 8 giây.
C. 10 giây
D. 12 giây
Câu 17:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB=a2  . Biết  SAABC SA=a . Góc giữa hai mặt phẳng SBC  ABC  bằng:

A. 30°.

B. 45°.

C. 60°.

D.90°.

Câu 18:

Cho hàm số y =f(x)   xác định trên R và có bảng biến thiên như hình vẽ

Cho hàm số y=f(x)  xác định trên R  và có bảng biến thiên như hình vẽ (ảnh 1)

Hỏi phương trình 2fx+7=0  có bao nhiêu nghiệm?

A. 4

B. 1

C. 2

D. 3

Câu 19:

Sau khi phát hiện dịch bệnh viêm đường hô hấp cấp do vi rút 2019-nCoV gây ra, nhóm các chuyên gia y tế đã nghiên cứu độc lập tại một địa phương của thành phố Vũ Hán trong 1 tháng. Theo thống kê, số người nhiễm bệnh được biểu thị là đồ thị hàm số fx . Tốc độ truyền bệnh (người/ngày) được biểu thị bởi đồ thị hàm số fx  .

Sau khi phát hiện dịch bệnh viêm đường hô hấp cấp do vi rút 2019-nCoV gây ra (ảnh 1)

Tại thời điểm tốc độ truyền bệnh lớn nhất thì số người mắc bệnh là:

A. 154.

B. 6
C. 14.
D. 200.
Câu 20:

Gọi Mm lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số fx=cos22xsinxcosx  trên R. Giá trị M+m bằng:

A. 12.

B. 2516.

C. 916.

D. 58.

Câu 21:
Trong không gian Oxyz, cho mặt cầu S:x2+y2+z22x2z=0  và mặt phẳng α:4x+3y+mz=0 . Có bao nhiêu giá trị nguyên của tham số m để  α cắt S   theo giao tuyến là một đường tròn?

A. 14. 

B. 15
C. 1
D. Vô số.
Câu 22:
. Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A lên mặt phẳng ABC  trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’BC bằng a34 . Thể tích của khối lăng trụ là:

A. a3312.

B. a336.

C. a333.

D. a3324.

Câu 23:

Cho hàm số y=fx  liên tục trên R , có đạo hàm f'x=xx12018x+22019x32020  . Số điểm cực trị của hàm số y=fx  là:

A. 3.

B. 2.
C. 4.
D. 1.
Câu 24:

Cho a là số thực dương khác 1.

Biểu thức P=loga2019+loga2019+loga32019+...+loga20182019+loga20192019  bằng:

A. 1010.2019.loga2019.

B.2018.2019.loga2018.

C. 2018.loga2018.

D. 2019.loga2018.

Câu 25:

Trên mặt phẳng tọa độ Oxy, hai điểm A, B lần lượt biểu diễn hai số phức z1 và z2  . Điểm biểu diễn số phức z=2z1z2¯  là điểm nào sau đây?

Trên mặt phẳng tọa độ Oxy, hai điểm A, B lần lượt biểu diễn hai số phức z1  và z2 .  (ảnh 1)

A. Điểm M.

B. Điểm N
C. Điểm P
D. Điểm Q.
Câu 26:
Phương trình 25log52+x2=5x+log52  có nghiệm là:

A. x=12.

B.x=0.

C. x=0x=log52.

D. x=5.

Câu 27:

Một khối pha lê gồm một hình cầu H1  , bán kính R và một hình nón cụt H2  có bán kính đáy lớn, đáy nhỏ và chiều cao lần lượt là r1=2R,r2=R,h=2R  xếp chồng lên nhau như hình vẽ. Biết thể tích khối cầu H1  và khối nón cụt H2  lần lượt là v1 v2 . Tỉ số V1V2  bằng:

Một khối pha lê gồm một hình cầu  , bán kính R và một hình nón cụt (H1)  có bán kính đáy lớn,  (ảnh 1)

A. 37.

B. 87.

C. 47.

D. 27.

Câu 28:
Cho hàm số y=fx  liên tục trên \1  và có bảng biến thiên như sau:
Cho hàm số  y=f(X) liên tục trên R\1  và có bảng biến thiên như sau: (ảnh 1)

Đồ thị hàm số y=14fx225  có bao nhiêu đường tiệm cận đứng?

A.2

B.4

C.6

D.8

Câu 29:

Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu như hình vẽ bên). Diện tích phần không tô màu của viên gạch bằng:

Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol  (ảnh 1)

A. 44003cm2.

B. 16003cm2.

C. 32003cm2.

D. 40003cm2.

Câu 30:

Trong không gian, cho hai điểm A, B cố định có độ dài AB bằng 6. Tập hợp các điểm M trong không gian sao cho MA=2MB  là một mặt cầu có bán kính bằng:

A. 62.

B.22.

C. 32.

D. 6

Câu 31:

Biết rằng hàm số Fx  là một nguyên hàm của hàm số fx=ln2x+4.lnxx  và thỏa mãn F1=83  . Giá trị của Fe2  bằng:

A. 83.

B. 12527.

C. 5527.

D. 1259.

Câu 32:
Cho hàm số fx . Biết f0=2  và f'x=2ex+1ex,x  , khi đó 01fxdx  bằng:

A. 3e1e.

B.3e+1e.

C. 3e+1e.

D.3e1e.

Câu 33:

Trong không gian Oxyz, cho hai đường thẳng d1:x=2y=1+tz=2+2t;d2:x11=y+11=z31  . Đường thẳng Δ  vuông góc và cắt đồng thời hai đường thẳng d1  d2  có phương trình là:

A. Δ:x+11=y12=z+31.

B. Δ:x11=y+12=z31.

C. Δ:x11=y22=z+11.

D. Δ:x+21=y+12=z+21.

Câu 34:

Cho số phức z thỏa mãn điều kiện :z+i=z¯+2+i

Giá trị nhỏ nhất của biểu thức P=i1z+42i  bằng:

A. 1 

B. 32.

C. 3

D. 322.

Câu 35:

Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC. ĐặtIA=x;IB=y;IC=z , biết rằng1x2=1y2+1z2+ayz . Giá trị của a bằng:

Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC.  (ảnh 1)

A. 2

B. 3

C. 1

D. 5

Câu 36:

Cho hàm số fx , hàm số y=f'x  liên tục trên R và có đồ thị như hình vẽ. Bất phương trình fx>2x+m  (m là tham số thực) nghiệm đúng với mọi x1;2  khi và chỉ khi:

Cho hàm số f(x) , hàm số y=f'(x)   liên tục trên R  và có đồ thị như hình vẽ.  (ảnh 1)

A. m<f24.

B. mf24.

C. mf1+2.

D. m<f1+2.

Câu 37:

Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp X=1;2;3;4;5;6;7;8;9 . Chọn ngẫu nhiên một số từ S. Xác suất để chọn ra được một số có các chữ số 1, 2, 8, 9 trong đó các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau bằng:

A. 3142.

B. 95126.

C. 2528.

D. 1318.

Câu 38:

Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng (P) song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng a2  , ta được thiết diện là một hình vuông. Thể tích khối trụ bằng:

A. 3πa3.

B. πa33.

C. πa334.

D. πa3.

Câu 39:

Giả sử m là số thực sao cho phương trình log32xm+2log3x+3m2=0  có hai nghiệm x1,x2  thỏa mãn x1.x2=9 . Khi đó m thuộc khoảng nào dưới đây?

A. m1;1.

B. m4;6.

C. m3;4.

D. m1;3.

Câu 40:

Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng 30° . BiếtAB=5,AC=7,BC=8  tính khoảng cách d từ A đến mặt phẳng (SBC).

A. d=353952.

B. d=353913.

C. d=351352.

D. d=351326.

Câu 41:

Cho các hàm số fx,gx  liên tục trên đoạn 0;1  thỏa mãn m.fx+n.f1x=gx  với m, n là các số thực khác 0 và . Giá trị của 01fxdx=01gxdx=1  là:

A. m+n=0.

B. m+n=12.

C. m+n=1.

D. m+n=2.

Câu 42:

Trong không gian Oxyz, cho A1;1;2,B2;0;3,C0;1;2  . Gọi Ma;b;c  là điểm thuộc mặt phẳng Oxy  sao cho biểu thức S=MA.MB+2MB.MC+3MC.MA  đạt giá trị nhỏ nhất. Khi đó T=12a+12b+c  có giá trị là:

A. T=3.

B. T=-3.

C. T=1.

D. T=-1.

Câu 43:

Cho hàm số y=fx=ax2+bx+c  có đồ thị như hình vẽ. Kí hiệu X  là phần nguyên của X. Số nghiệm của phương trình ffff...fx2020 lÇn f=0   trên [1;2] là:

Cho hàm số  y = f(x): ax^2+bx+c có đồ thị như hình vẽ. Kí hiệu  [X] là phần nguyên của X.  (ảnh 1)

A. 220223+12+1.

B. 22021312+1.

C. 220213+32+1.

D. 220213+52+1.

Câu 44:

Cho z là số phức thay đổi thỏa mãn số phức w=z+3+4izi  là số thuần ảo. Tập hợp các điểm biểu diễn cho số phức z là:

A. đường elip bỏ đi một điểm.

B. đường thẳng song song với trục tung.
C. đường tròn bỏ đi một điểm. 
D. đường thẳng bỏ đi một điểm
Câu 45:

Cho hai hàm số y=fx,y=gx  có đồ thị hàm số y=fx,y=gx  như hình vẽ sau:

Cho hai hàm số y =f(x(;y=(gx)  có đồ thị hàm số y =f(x(;y=(gx)    như hình vẽ sau:    (ảnh 1)

Xét hàm số hx=fxgx trên 5;5 , biết rằng S2<S1=S3 . Khi đó giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=hx   trên đoạn 5;5  lần lượt bằng:

A. h5  và h5

B. h5  và h2
C. h5  và h2

D. h2 và h(2)

Câu 46:

Cho hàm số y=fx  có đạo hàm liên tục trên R và hàm số y=fx  có đồ thị như hình vẽ bên. Hàm số y=f2x1có bao nhiêu điểm cực trị?

Cho hàm số  y =f(x) có đạo hàm liên tục trên R và hàm số  y=f(x) có đồ thị như hình vẽ bên (ảnh 1)

A. 1

B. 3

C. 5

D. 7

Câu 47:

Cho tứ diện ABCD và các điểm M, N, P thuộc các cạnh BC, BD, AC sao cho BC=4BM,AC=3AP,BD=2BN  . Tỉ số thể tích hai phần của khối tứ diện ABCD được phân chia bởi mặt phẳng MNP bằng

A. 713.

B. 715.

C. 815.

D. 813.

Câu 48:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  và điểm M nằm ngoài mặt cầu S:x2+y2+z22x4y+6z13=0  sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu S  (A, B, C là các tiếp điểm) và BMC^=60°,AMB^=90°,CMA^=120°  . Khi đó, thể tích khối chóp M.ABC bằng:

A. 2724.

B. 924.

C. 922.

D. 934.

Câu 49:

Đồ thị hàm số fx=ax3+bx2+cx+d  có dạng như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình ffx+1=m  có số nghiệm là lớn nhất?

Đồ thị hàm số y=ax^3+bx+cx+d  có dạng như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình (ảnh 1)

A. 5

B. 2

C. 4

D. 3

Câu 50:

Biết m là một số thực để bất phương trình 3x+4mx+5x2mx30 , thỏa mãn với mọi x . Mệnh đề nào dưới đây đúng?

A. m10;+.

B. m3;6.

C. m2;3.

D. m6;10.