25 đề thi thử Toán THPT Quốc gia có lời giải chi tiết (Đề 20)

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:
Trong không gian Oxyz, mặt phẳng tọa độ (Oyz) có phương trình là

A. x=0.

B. y+z=0.

C. yz=0.

D. y=0.

Câu 2:
Cho Fx  là nguyên hàm của hàm số fx  trên a;b.   Phát biểu nào sau đây sai?

A. abfxdx=FbFa.

B. abfxdxabftdt.

C. abfxdx=0.

D.abfxdx=bafxdx.

Câu 3:
Cho số phức z=2+i.  Điểm nào dưới đây biểu diễn số phức w=1iz?
Cho số phức z=2+is Điểm nào dưới đây biểu diễn số phức     (ảnh 1)

A. Điểm O

B. Điểm N

C. Điểm P

D. Điểm M

Câu 4:

Nghiệm của phương trình 22x1=8  

A. x=32.

B. x=2.

C. x=52.

D. x=1.

Câu 5:
Cho hàm số y=f(x) có đạo hàm tại x0. Khẳng định nào sau đây đúng?

A. Nếu f'x0=0  thì hàm số đạt cực trị tại x0.

B. Hàm số đạt cực trị tại x0 khi và chỉ khi f'x0=0.
C. Nếu hàm số đạt cực tiểu tại x0  thì f'x0< 0.
D. Nếu hàm số đạt cực trị tại x0  thì f'x0=0.
Câu 6:

Cho đường thẳng  l song song với đường thẳng    Khi quay đường thẳng l xung quanh đường thẳng  (l luôn cách  một khoảng không đổi) sẽ tạo ra

  A. Mặt trụ.

B. Hình trụ.
C. Khối trụ
D. Hình nón.
Câu 7:

Hàm số y=x42x2+2016  nghịch biến trên khoảng nfo sau đây?

A. ;1.

B.1;1.

C. 1;0.

D. ;1.

Câu 8:

Với kn là hai số nguyên dương tùy ý thỏa mãn kn,  mệnh đề nào dưới đây đúng?

A. Cnk=n!k!nk!.

B. Cnk=n!k!.

C. Cnk=n!nk!.

D. Cnk=k!nk!n!.

Câu 9:

Giá trị cực tiểu yCT  của hàm số y=x3+3x2016  

A. yCT=2014.

B. yCT=2016.

C. yCT=2018.

D. yCT=2020.

Câu 10:

Nghiệm phương trình log4x1=3  

A. x=63.

B. y=65.

C. x=80.

D. yCT=2020.

Câu 11:

Họ các nguyên hàm của hàm số fx=2xex  

A. 2xex+C

B.x2+ex+C

C. x2ex+C

D. x2ex+C.

Câu 12:

Cho hình chóp S.ABCSA vuông góc với mặt phẳng đáy, AB=a    SB=2a.  Góc giữa đường thẳng SB với mặt phẳng đáy bằng

A. 60°.

B. 30°.

C.90°.

D. 45°.

Câu 13:

Trong không gian Oxyz, phương trình mặt cầu tâm I2;1;1  đi qua điểm A0;1;0  

A. x2+y+12+z2=9.

B. x22+y+12+z+12=9.

C.x+22+y12+z12=9.

D. x2+y12+z2=9.

Câu 14:

Trong không gian Oxyz, phương trình đường thẳng đi qua điểm E1;0;2,  có vectơ chỉ phương u=3;1;7  

A. x13=y1=z+27.

B. x+13=y1=z27.

C. x11=y1=z23.

D. x+11=y1=z23.

Câu 15:

Cho cấp số cộng un  với u1=12un+1=un2.  Công thức số hạng tổng quát của dãy số này là

A. un=12+2n1.

B. un=122n1.

C. un=122n.

D. un=12+2n.

Câu 16:

Cho hình lăng trụ đứng ABC.A'B'C'  tất cả các cạnh bằng 2a.  Thể tích của khối lăng trụ ABC.A'B'C'  bằng

A. 62a3.

B. 312a3.

C. 34a3.

D. 66a3.

Câu 17:

Hàm số f(x) có đạo hàm f'(x) trên khoảng K. Hình vẽ bên dưới là đồ thị của hàm số f'(x) trên khoảng K. Số điểm cực trị của hàm số f(x) 

Hàm số  f(x) có đạo hàm f'(x)  trên khoảng K. Hình vẽ bên  (ảnh 1)

A. 0

B. 1

C. 2

D. 3

Câu 18:

Cho số thực x, y thỏa mãn 2xyi+y12i=3+7i  với i là đơn vị ảo. Giá trị của x2xy  bằng

A. 30

B. 40

C. 10

D. 20

Câu 19:

Trong không gian Oxyz, cho hình bình hành ABCD vớiA1;2;3, B5;0;1,C4;3;6, Da;b;c. Giá trị của a+b+c  bằng

A. 3

B. 11

C. 15

D. 5

Câu 20:

Cho hàm số y=fx  liên tục trên đoạn 2;4  và có đồ thị như hình vẽ. Số nghiệm thực của phương trình 3fx5=0  trên đoạn 2;4  

Cho hàm số y=f(x)  liên tục trên đoạn [2;4]  và có đồ thị  (ảnh 1)

A. 1

B. 2

C. 3

D. 4

Câu 21:

Cho hàm sốfx  có đạo hàm  f'x=xx23,x.  Hàm số đã cho nghịch biến trên khoảng nào sau đây?

A. 1;0.

B.1;3.

C. 0;1.

D. 2;0.

Câu 22:
Số nghiệm thực phân biệt của phương trình4x25.2x2+4=0  

A.3

B. 2

C. 4

D. 1

Câu 23:

Tính tích phân  I=0π2x+esinxcosx.dx

A. I=π2+e2.

B. I=π2+e.

C. I=π2e.

D. I=π2+e+2.

Câu 24:

Cho hàm số y=5x3x2+4xm  với m là tham số thực. Khẳng định nào sau đây là khẳng định sai?

A. Nếu m<4  đồ thị hàm số có một tiệm cận ngang.                       

B. Nếu m=4  đồ thị hàm số có một tiệm cận ngang và một tiệm cận đứng.
C. Nếu m>4  đồ thị hàm số có ít nhất một tiệm cận đứng và một tiệm cận ngang..  
D. Với mọi m hàm số luôn có hai tiệm cận đứng.
Câu 25:

Cho tam giác đều ABC có diện tích bằng 3  quay xung quanh cạnh AC của nó. Tính thể tích V của khối tròn xoay được tạo thành

A. V=2π.

B. V=π.

C. V=74π.

D. V=78π.

Câu 26:

Trong không gian Oxyz, có bao nhiêu số thực m để mặt phẳng P:x+2y2z1=0  song song với mặt phẳng Q:2x+m+2y2mzm=0?

A. 1

B. 0

C. Vô số

D. 2

Câu 27:

Tìm hai số thực bc biết rằng phương trình z2+bz+c=0  có nghiệm phức z=1+i.

A. b=2c=2.

B. b=2c=2.

C. b=2c=2.

D. b=2c=2.

Câu 28:

Cho khối đa diện (H) như hình vẽ, trong đó ABC.A'B'C' là khối lăng trụ tam giác đều có tất cả các cạnh bằng 1 và S.ABC là khối chóp tam giác đều có độ dài cạnh bên bằng 23. Thể tích của khối đa diện đã cho bằng

Cho khối đa diện   như hình vẽ, trong đó   là khối lăng trụ tam giác đều có tất cả các cạnh bằng 1 và S.ABC là khối Cho khối đa diện   như hình vẽ, trong đó ABC.A'B'C'  là khối lăng trụ tam giác đều có tất cả các  (ảnh 1)

A. 39.

B.33.

C. 33.

D. 5318.

Câu 29:

Phương trình 31+x+31x=10  có hai nghiệm  x1;x2. Khi đó giá trị biểu thức P=x1+x2+2x1x2  

A. 0

C. -6

C. -2

D. 2

Câu 30:
Một khối đồ chơi gồm hai khối trụ H1,H2  xếp chồng lên nhau lần lượt có bán kính đáy và chiều cao tương ứng là r1,h1,r2,h2  thỏa mãn r2=12r1,h2=2h1  (tham khảo hình vẽ). Biết rằng thể tích của toàn bộ khối đồ chơi bằng 30 cm3,  thể tích của khối trụ H1  bằng
Một khối đồ chơi gồm hai khối trụ H1H2  xếp chồng lên  (ảnh 1)

A. 24 cm3 

B. 15 cm3
C. 20 cm3.
D. 10 cm3.
Câu 31:

Trong không gian Oxyz, cho điểm G1;4;3.  Mặt phẳng cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm tứ diện OABC có phương trình là

A. x3+y12+z9=1.

B. x4+y16+z12=1.

C. 3x+12y+9z78=0.

D. 4x+16y+12z104=0.

Câu 32:

Cho mặt cầu  bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo bán kính R sao cho diện tích xung quanh hình trụ lớn nhất.

A. h=R2.

B. h=R.

C. h=R2.

D. h=R22.

Câu 33:

Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị y=f'(x) như hình vẽ bên. Đặt gx=fxx22,  biết rằng đồ thị hàm g(x) luôn cắt trục hoành tại 4 điểm phân biệt. Mệnh đề nào dưới đây đúng?

Cho hàm số  y=f(x) có đạo hàm liên tục trên R  và có đồ thị   như hình vẽ bên (ảnh 1)

A. g0>0g1<0g2g1>0.

B. g0>0g1>0g2g1<0.

C. g0>0g1<0.

D. g0>0g2<0.

Câu 34:
Có bao nhiêu số phức z thỏa mãn z+z2i134i=0?

A. 1

B. 3

C. 2

D. 0

Câu 35:

Tìm tất cả các giá trị thực của m sao cho đồ thị hàm số y=x42mx2+2m+m4  có ba điểm cực trị tạo thành một tam giác đều

A. m =0

B. m=33.

C. m=33.

D. m=3.

Câu 36:

Cho phương trình log9x2log34x1=log3m  (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có nghiệm?

A. 5

B. 3

C. Vô số

D. 4

Câu 37:
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình 16xm.4x+1+5m245=0  có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

A. 13

B. 3

C. 6

D. 4

Câu 38:

Tích phân π2π22x1.cosx1+2x  bằng

A. 12.

B. 0

C. 2

D. 1

Câu 39:

Một người đem 100 triệu đồng đi gửi tiết kiệm với kỳ hạn 6 tháng, mỗi tháng lãi suất là 0,7% số tiền mà người đó có. Hỏi sau khi hết kỳ hạn, người đó được lĩnh về bao nhiêu tiền?

A. 108.0,0075 đồng

B. 108.1,0075 đồng

C. 108.0,0076 đồng

D. 108.1,0076 đồng

Câu 40:

Trong không gian Oxyz, cho ba điểm A3;0;0,B0;4;0,C0;0;c  với c là số thực thay đổi khác 0. Khi c thay đổi thì trực tâm H của tam giác ABC luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

A. 52.

B. 54.

C. 125.

D. 65.

Câu 41:

Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn C:x2+y32=1  xung quanh trục hoành là

A. V=6π.

B. V=6π3.

C. V=3π3.

D. V=6π2.

Câu 42:
Có tất cả bao nhiêu số phức z thỏa mãn z+z¯+zz¯=4  và z22i=32?

A. 7

B. 3

C. 2

D. 5

Câu 43:

Trong không gian Oxyz, cho mặt cầu S:x2+y2+z32=8  và hai điểm A4;4;3,B1;1;1. Tập hợp tất cả các điểm M thuộc (S) sao cho MA=2MB là một đường tròn (C) Bán kính của (C) bằng

A. 7.

B. 6.

C. 22.

D.3.

Câu 44:

Có 5 người nam và 3 người nữ cùng đến dự tiệc, họ không quen biết nhau, cả 8 người cùng ngồi một cách ngẫu nhiên vào xung quanh một cái bàn tròn có 8 ghế. Gọi P là xác suất không có 2 người nữ nào ngồi cạnh nhau. Mệnh đề nào sau đây đúng?

A. P=27.

B. P=37.

C. P=387.

D. P=334.

Câu 45:

Tìm tập hợp tất cả các giá trị của tham số m để có đúng 8 số phức z thỏa mãn đồng thời các điều kiện z+z¯+zz¯=z2  và z=m.

A. 2;2.

B. 2;22.

C. 2;2.

D. 2;22.

Câu 46:

Hàm số y=mx4+m+3x2+2m1  (với m là tham số) chỉ có cực đại mà không có cực tiểu khi và chỉ khi

A. m3.

B. m>3.

C. m0.

D.3<m<0.

Câu 47:

Cho hàm số f(x) liên tục trên  +.  Biết sin2x  là một nguyên hàm của hàm số fxx,  họ tất cả các nguyên hàm của hàm số f'xlnx  trên khoảng 0;+  

A. 2xcos2x.lnx+sin2x+C.

B. 2xsin2x.lnxcos2x+C.

C. 2xcos2x.lnxsin2x+C.

D. 2xcos2x.lnx+sin2x+C.

Câu 48:

Cho tứ diện SABC có SA = 2a SAABC.  Tam giác ABCAB=a,BC=2a,CA=a5.   Diện tích mặt cầu ngoại tiếp tứ diện SABC

A. 16πa2.

B. 27πa2.

C. 36πa2.

D. 9πa2.

Câu 49:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=mx33mx2+3m3  có hai điểm cực trị A, B sao cho 2AB2OA2+OB2=20  (trong đó O là gốc tọa độ)

A. m=1.

B. m=1.

C. m=1 hoặc m=1711.

D.m=1 hoặc m=1711.

Câu 50:

Cho tứ diện ABCDCAB^=60°,AC=12AD,DAB^=120°,CD=AD.  Góc giữa đường thẳng ABCD bằng

A. arccos34.

B.30°

C.60°

D. arccos14.