30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 26)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Từ các chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?
A.
B.
C.
D.
Cho cấp số cộng (un) với u1=2 và công sai d=1. Khi đó u3 bằng
A. 3.
B. 1.
C. 4.
D. 2.
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?
A.
B.
C.
D.
Cho hàm số y=f(x) có đạo hàm trên R và có bảng xét dấu y’ như sau
Hàm số y=f(x) đạt cực đại tại điểm
A. x=2
B. x=-2 và x=2
C. x=-2
D. x=0
Cho hàm số có đồ thị y=f(x) như hình vẽ bên dưới. Trên đoạn [-3;1] hàm số đã cho có mấy điểm cực trị?
A. 1.
B. 2.
C. 3.
D. 4.
Cho hàm số . Tìm đường tiệm cận ngang của đồ thị hàm số.
A.
B.
C.
D.
Đường cong hình bên là đồ thị của hàm số y=ax4+bx2+c với a, b, c là các số thực. Mệnh đề nào dưới đây đúng?
A.
B.
C. .
D. .
Cho hàm số có đồ thị (C). Mệnh đề nào sau đây đúng?
A. (C) cắt trục hoành tại hai điểm.
B. (C) cắt trục hoành tại một điểm.
C. (C) không cắt trục hoành.
D. (C) cắt trục hoành tại ba điểm.
Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.
Đạo hàm của hàm số y = 3x là
A.
B.
C.
D.
Cho các số thực m, n và a là số thực dương. Mệnh đề nào sau đây là mệnh đề đúng?
A.
B.
C.
D.
Tìm tập nghiệm S của phương trình
A.
B.
C.
D.
Phương trình log2(x-3) = 3 có nghiệm là
A. x = 5
B. x = 12
C. x = 9
D. x = 11
Tìm nguyên hàm của hàm số f(x) = 2x3-9
A.
B.
C.
D.
Họ nguyên hàm của hàm số f(x) = e2x+x2 là
A.
B.
C.
D.
Biết là một nguyên hàm của f(x) và F(a)=-3. Tính F(b)
A. F(b) = 13
B. F(b) = 10
C. F(b) = 16
D. F(b) = 7
Cho Khi đó bằng
A. 32
B. 34
C. 42
D. 46
Cho số phức . Phần thực và phần ảo của số phức lần lượt là
A. 7 và
B. -7 và
C. 7 và
D. 7 và
Cho hai số phức Khi đó số phức là
A.
B.
C.
D.
Trên mặt phẳng tọa độ Oxy cho điểm M trong hình vẽ bên là điểm biễu diễn của số phức z. Tìm z
A.
B.
C.
D.
Tính thể tích V của khối hộp có chiều cao bằng h và diện tích đáy bằng B
A.
B.
C.
D.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có Tính thể tích khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
Một khối trụ có bán kính đáy R, đường cao h. Thể tích khối trụ bằng
A.
B.
C.
D.
Cho tam giác SOA vuông tại O có SO=3cm, SA=5cm. Quay tam giác SOA xung quanh cạnh SO được khối nón. Thể tích khối nón tương ứng là
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz cho hai điểm Tọa độ trọng tâm của tam giác OMN là
A.
B.
C.
D.
Viết phương trình mặt cầu tâm I(1;-2;3) và bán kính R=2.
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm Phương trình nào dưới đây là phương trình của mặt phẳng (ABC)?
A.
B.
C.
D.
Trong không gian Oxyz, cho hai điểm A(2;-1;4) và B(-1;3;2). Đường thẳng AB có một véc-tơ chỉ phương là
A.
B.
C.
D.
Có 16 tấm bìa ghi 16 chữ “HỌC”, “ĐỂ”, “BIẾT”, “HỌC”, “ĐỂ”, “LÀM”, “HỌC”, “ĐỂ”, “CHUNG”, “SỐNG”, “HỌC”, “ĐỀ”, “TỰ”, “KHẲNG”, “ĐỊNH”, “MÌNH”. Một người xếp ngẫu nhiên 16 tấm bìa cạnh nhau. Tính xác suất để xếp các tấm bìa được dòng chữ “HỌC ĐỀ BIẾT HỌC ĐỂ LÀM HỌC ĐỂ CHUNG SỐNG HỌC ĐỂ TỰ KHẲNG ĐỊNH MÌNH”.
A.
B.
C.
D.
Cho hàm số y=f(x) có đồ thị như hình bên. Khi đó y=f(x) là hàm số nào sau đây?
A.
B.
C.
D.
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;1]
A.
B.
C.
D.
Tập nghiệm của bất phương trình 3x > 9 là
A.
B.
C.
D.
Tính tích phân
A.
B.
C.
D.
Cho hai số phức và Phần ảo của số phức là
A. 12
B. 1
C. 11
D. 12i
Cho hình chóp S.ABC có SA vuông góc với đáy ABC. Tam giác ABC vuông cân tại B và Tính góc giữa SC và mặt phẳng (ABC).
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và SA=a. Khoảng cách từ điểm A đến mặt phẳng (SBD) bằng
A.
B.
C.
D.
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;1;1). Một mặt phẳng (P) cắt (S) thep giao tuyến là một đường tròn (C). Biết chu vi lớn nhất của (C) bằng Phương trình của (S) là
A.
B.
C.
D.
Trong không gian Oxyz, cho A(1;-2;1) và B(0;1;3). Phương trình đường thẳng đi qua hai điểm A, B là
A.
B.
C.
D.
Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn [-2;1] đạt giá trị nhỏ nhất. Giá trị của m là
A. 5
B. 4
C. 1
D. 3
Có tất cả bao nhiêu cặp số thực (x;y) thỏa mãn đồng thời các điều kiện và
A. 3
B. 2
C. 1
D. 4
Biết với a,b,c là các số hữu tỉ, tính
A. S = 515
B. S = 164
C. S = 436
D. S = -9
Cho số phức thỏa mãn Tính |z|.
A.
B.
C. .
D.
Cho hình hình hộp chữ nhật ABCD.A’B’C’D’ có đáy là hình vuông cạnh a, chiều cao Gọi M là trung điểm của CC’. Tính thể tích của khối tứ diện BDA’M.
A.
B.
C.
D.
Một chiếc cốc hình trụ có đường kính đáy 6 cm, chiều cao 15 cm chứa đầy nước. Nghiêng cốc cho nước chảy từ từ ra ngoài cho đến khi mép nước ngang với đường kính của đáy. Khi đó diện tích của bề mặt nước trong cốc bằng.
A.
B.
C.
D.
Trong không gian Oxyz, cho đường thẳng và mặt phẳng Tìm hình chiếu của đường thẳng d trên (P)
A.
B.
C.
D.
Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ bên. Số điểm cực trị của hàm số là
A. 2
B. 1
C. 3
D. 4
Giả sử S=(a;b] là tập nghiệm của bất phương trình
Khi đó b-a bằng
A.
B. 2
C.
D.
Cho (H) là hình phẳng giới hạn bởi parabol và nửa đường tròn có phương trình với (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Cho số phức z thỏa mãn điều kiện Giá trị nhỏ nhất của biểu thức được viết dưới dạng với a, b là các hữu tỉ. Giá trị của a+b là
A. 3
B. 2
C. 7
D. 4
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của BC và H là trung điểm của AM. Biết góc giữa mặt phẳng (SHC) và mặt phẳng (HBC) bằng 60o. Tính cô-sin của góc giữa đường thẳng BC và mặt phẳng (SHC).
A.
B.
C.
D.