30 Đề thi thử thpt quốc gia môn Toán hay nhất có lời giải chi tiết (Đề số 4)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Tập xác định của hàm số là:
A.
B.
C.
D.
Nghiệm của phương trình là
A.
B.
C.
D.
Cho cấp số cộng có số hạng tổng quát là . Tìm công sai d của cấp số cộng.
A.
B.
C.
D.
Dãy số nào sau đây có giới hạn bằng 0?
A.
B.
C.
D.
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
A. 6
B. 4
C. 3
D. 2
Cho hàm số . Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng và nghịch biến trên khoảng
B. Hàm số đồng biến trên khoảng
C. Hàm số nghịch biến trên khoảng và đồng biến trên khoảng
D. Hàm số nghịch biến trên khoảng
Cho hàm số có đạo hàm trên đoạn . Ta xét các khẳng định sau:
(1) Nếu hàm số đạt cực đại tại điểm thì là giá trị lớn nhất của trên đoạn .
(2) Nếu hàm số đạt cực đại tại điểm thì là giá trị nhỏ nhất của trên đoạn
(3) Nếu hàm số đạt cực đại tại điểm và đạt cực tiểu tại điểm () thì ta luôn có .
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Hàm số có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 0
D. 3
Giá trị nhỏ nhất của hàm số trên đoạn là:
A.
B.
C.
D.
Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình?
A.
B.
C.
D.
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A.
B.
C.
D.
Khối đa diện đều có 12 mặt thì có số cạnh là:
A. 30
B. 60
C. 12
D. 24
Cho tứ diện MNPQ. Gọi lần lượt là trung điểm của các cạnh . Tỉ số thể tích bằng
A.
B.
C.
D.
Cho tập ; . Tập là
A.
B.
C.
D.
Phương trình có bao nhiêu nghiệm trên khoảng ?
A. 5
B. 4
C. 2
D. 3
Một tổ công nhân có 12 người. Cần chọn 3 người để đi làm cùng một nhiệm vụ, hỏi có bao nhiêu cách chọn?
A.
B. 12!
C.
D.
Tìm hệ số của trong khai triển thành đa thức của .
A.
B.
C.
D.
Cho cấp số nhân có , công bội . Hỏi là số hạng thứ mấy của ?
A. Số hạng thứ 6
B. Số hạng thứ 7
C. Số hạng thứ 5
D. Số hạng thứ 8
Phát biểu nào sau đây là sai?
A. ( là hằng số)
B.
C.
D.
Tính đạo hàm của hàm số :
A.
B.
C.
D.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình . Phép tịnh tiến theo nào sau đây biến đường thẳng d thành chính nó?
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
A. cắt
B.
C.
D.
Cho hình chóp đều S.ABCD, cạnh đáy bằng a, góc giữa mặt bên và mặt đáy là . Tính khoảng cách từ điểm B đến mặt phẳng .
A.
B.
C.
D.
Cho hàm số . Khẳng định nào sau đây đúng?
A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó.
B. Hàm số đã cho đồng biến trên .
C. Hàm số đã cho đồng biến trên khoảng
D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó
Cho hàm số (m là tham số thực) thỏa mãn . Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.
Cho hàm số , đồ thị có bao nhiêu đường tiệm cận?
A. 0
B. 1
C. 2
D. 3
Cho hình chóp S.ABCD. Gọi theo thứ tự là trung điểm của SA, SB, SC, SD. Tính tỉ số thể tích của hai khối chóp và .
A.
B.
C.
D.
Cho hình lăng trụ có đáy ABC là tam giác đều cạnh a, . Biết rằng hình chiếu vuông góc của lên là trung điểm BC. Tính thể tích V của khối lăng trụ đó.
A.
B.
C.
D.
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết . Tính cosin góc A của tam giác.
A.
B.
C.
D.
Tổng tất cả các giá trị nguyên của m để phương trình có nghiệm là:
A. 5
B. 6
C. 10
D. 3
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số là
A.
B.
C.
D.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán.
A.
B.
C.
D.
Cho hàm số . Khi hàm số có đạo hàm tại . Hãy tính T=a+2b.
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng và . Khoảng cách giữa SC và AB bằng
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, và SA vuông góc với đáy ABCD. Tính , với là góc tạo bởi giữa đường thẳng BD và mặt phẳng .
A.
B.
C.
D.
Cho hàm số , m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng . Tìm số phần tử của S.
A. 1
B. 5
C. 2
D. 3
Cho hàm số xác định trên và hàm số có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số .
A. 4
B. 2
C. 5
D. 3
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
A. 3
B. 0
C. 2
D. 1
Cho lăng trụ tam giác đều có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và bằng
A.
B.
C.
D.
Biết n là số nguyên dương thỏa mãn và . Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết , đường thẳng AC có phương trình và . Tính .
A.
B.
C.
D.
Xét tứ diện ABCD có các cạnh và AC, BD thay đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD bằng.
A.
B.
C.
D.
Cho hàm số . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn . Có bao nhiêu giá trị nguyên của a để .
A. 15
B. 14
C. 17
D. 16
Cho hàm số . Biết rằng đường thẳng cắt đồ thị tại ba điểm phân biệt M, N, P. Tiếp tuyến tại ba điểm M, N, P của đồ thị cắt tại các điểm (tương ứng khác M, N, P). Khi đó đường thẳng đi qua ba điểm có phương trình là
A.
B.
C.
D.
Cho hàm số bậc ba có đồ thị như hình vẽ bên dưới:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
A. 5
B. 4
C. 6
D. 3
Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B) sao cho , . Biết , góc giữa hai đường thẳng a và b bằng . Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp ).
A.
B. 12
C.
D. 13
Cho tập hợp . Gọi S là tập hợp gồm tất cả các tập con của A, mỗi tập con này gồm 3 phần tử của A và có tổng bằng 91. Chọn ngẫu nhiên một phần tử của S. Xác suất chọn được phần tử có 3 số lập thành cấp số nhân bằng?
A.
B.
C.
D.
Biết m là giá trị để hệ bất phương trình có nghiệm thực duy nhất. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Cho phương trình:
.
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm ?
A. 2
B. 1
C. 3
D. 4