30 đề thi thử THPT Quốc gia môn Toán năm 2022 có lời giải - Đề 8

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Cho hình chóp có diện tích mặt đáy là 3a2 và chiều cao bằng 3a. Thể tích của khối chóp bằng  

A. a3.                            
B. 9a3.                           
 C. 6a3.    
D. 3a3.
Câu 2:

Cho a,b,c là các số dương, a1. Đẳng thức nào sau đây đúng? 

A. logabc=logab+logac.

B. logabc=logablogac.

C. logabc=logbalogbc.

D. logabc=logaclogab

Câu 3:

Giá trị lớn nhất của hàm số y=x+3x2  trên đoạn [-2;0] bằng 

A. 4.                              
B. 32.                            
C. 3.     
D. 54.
Câu 4:

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A,AB=2a AA'=a3. Thể tích của khối lăng trụ ABC.A'B'C' bằng 

A. 8a33

B. 4a33

C. 16a33

D. 8a333

Câu 5:

Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích khối cầu. Công thức nào sau đây sai? 

A. S=4πR2.

B. S=43πR2.

C. VR=43πR2.

D. 3V=S.R

Câu 6:

Cho hình chóp S.ABCD SBABCD (xem hình dưới), góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc nào sau đây?

Cho hình chóp S.ABCD có SB vuông góc (ABCD) (xem hình dưới), góc giữa đường thẳng  (ảnh 1)

A. DSB^

B. SDA^

C. SCB^

D. SDC^

Câu 7:

Hàm số y=3xπ xác định khi và chỉ khi

A. x3.

B. x0;+.

C. x3;+.

D. ;3.

Câu 8:

Hàm số y=x44x2+3 nghịch biến trên khoảng nào sau đây? 

A.0;+                      
 B.;+.                    
C.0;2.     
D. ;2.
Câu 9:

Một cấp số nhân có u1=3,u2=6. Công bội của cấp số nhân đó là

A. 2.                              
B. 9.                              
C. -2.     
D. -3.
Câu 10:

Đạo hàm của hàm số y = sin x 

A. y'=sinx.

B. y'=cosx.

C. y'=sinx.

D. y'=-cosx.

Câu 11:

Đường cong trong hình bên dưới là của đồ thị hàm số

Đường cong trong hình bên dưới là của đồ thị hàm số    (ảnh 1)

A. y=log2x+1.

B. y=2x1.

C. y=log2x.

D. y=2x

Câu 12:

Số giao điểm của đồ thị hàm số y=x44x22 và trục hoành là

A. 2.                              
B. 4.                              
C. 1.     
D. 0.
Câu 13:

Số điểm cực trị của hàm số y=x44x2+5 là 

A. 3.                             
B. 0.                              
C. 1.     
D. 2.
Câu 14:

Bất phương trình: 43x>1 có tập nghiệm là 

A. (0;1)

B. 1;+.

C. 0;+.

D. ;0.

Câu 15:

Đường cong trong hình là đồ thị của hàm số nào dưới đây?

Đường cong trong hình là đồ thị của hàm số nào dưới đây?   (ảnh 1)

A. y=2x43x2+1.

B. y=x33x+1.

C. y=x+1x1.

D. y=x3+3x2+1.

Câu 16:
Khối trụ có bán đáy r và đường cao h khi đó thể tích khối trụ là

A. V=πr2h.

B. V=23πrh.

C. V=13πr2h

D. V=2πrh.

Câu 17:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết SAABCD SA=a3. Thể tích khối chóp S.ABCD bằng

A. a334.

B. a33.

C. a333.

D. a336.

Câu 18:

Đường thẳng x = 3 là tiệm cận đồ thị hàm số nào sau đây? 

A. y=2x6x+3.

B. y=x+1x3.

C. y=x+1x3.

D. y=x-1x+3.

Câu 19:

Cho hình trụ có bán kính đáy r = 2 và chiều cao h = 4. Diện tích xung quanh của hình trụ này bằng

A. 16π.

B. 12π.

C. 20π.

D. 24π.

Câu 20:

Vật thể nào dưới đây không phải là khối đa diện? 

A.

Vật thể nào dưới đây không phải là khối đa diện?  (ảnh 2)

B.

Vật thể nào dưới đây không phải là khối đa diện?  (ảnh 3)

C.

Vật thể nào dưới đây không phải là khối đa diện?  (ảnh 4)

D.

Vật thể nào dưới đây không phải là khối đa diện?  (ảnh 5)
Câu 21:

Với a là số thực dương, biểu thức rút gọn của a3+1.a33a525+2 là 

A. a3.

B. a6.

C. a23.

D. a5.

Câu 22:

Tất cả các giá trị của m sao cho hàm số y=x33mx2+4m đồng biến trên khoảng (0;4) là 

A. m>0.

B. m2.

C. 2m<0.

D. m4.

Câu 23:

Với giá trị nào của m thì hàm số y=x33x2+mx đạt cực tiểu tại x =2?

A. m0.

B. m=0.

C. m<0.

D. m>0.

Câu 24:

Cho khối chóp S.ABC có đáy là tam giac vuông tại B,AB=1,BC=2, cạnh bên SA vuông góc với đáy và SA=3. Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng 

A. 3π2.                            
B. 2π.                            
C. 12π.     
D. 6π.
Câu 25:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,SD=3a2, hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trung điểm của AB. Tính theo a thể tích khối chóp S.ABCD.

A. 2a33.

B. a33.

C. a34.

D. a32.

Câu 26:

Số nghiệm của phương trình log23x+log21x=3 là 

A. 1.                              
B. 3.                              
C. 0.     
D. 2.
Câu 27:

Hình đa diện nào dưới đây không có tâm đối xứng? 

A. Hình lập phương.                                          

B. Bát diện đều.           

C. Tứ diện đều.                
D. Lăng trụ lục giác đều. 
Câu 28:

Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số fx=2xx2x6 

A. 1.                              
B. 3.                              
C. 0.     
D. 2.
Câu 29:

Một hộp chứa 7 quả cầu xanh, 5 quả cầu vàng. Chọn ngẫu nhiên 3 quả. Xác suất để 3 quả được chọn có ít nhất 2 quả cầu xanh là

A. 744.

B. 411.

C. 711.

D. 21220.

Câu 30:

Số tiếp tuyến của đồ thị hàm số fx=x33x2+2 song song với đường thẳng y=9x2.

A. 1.                             
B. 0.                              
C. 2.     
D. 3.
Câu 31:

Cho hàm số y= f(x) có bảng biến thiên như sau:

Cho hàm số y= f(x) có bảng biến thiên như sau:  Số tiệm cận đứng và tiệm cận ngang của (ảnh 1)

Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y= f(x) 

A. 0.                              
B. 2.                              
C. 1.     
D. 3.
Câu 32:

Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều, AA'=4a. Biết rằng hình chiếu vuông góc của A lên (ABC) là trung điểm M của

BC,A'M=2a. Thể tích của khối lăng trụ ABC.A'B'C'

A. 8a333.

B. 16a333.

C. 16a33.

D. 8a33.

Câu 33:

Gọi M,C,Đ thứ tự là số mặt, số cạnh, số đỉnh của hình bát diện. Khi đó S=MC+Đ bằng 

A. S = 2

B. S = 10

C. S = 14

D. S = 26

Câu 34:

Một khối cầu có bán kính bằng 2, một mặt phẳng α cắt khối cầu đó theo một hình tròn (C) biết khoảng cách từ tâm khối cầu đến mặt phẳng α bằng 2 Diện tích của hình tròn (C) 

A. 2π.

B. 8π.

C. π.

D. 4π.

Câu 35:

Cho hai số thực 0 < a< b < 1. Khẳng định nào sau đây là đúng: 

A. logab<1<logba.

B. logba<logab<1.

C. logba<1<logab.

D. 1<log6a<logab.

Câu 36:

Cho α=logax,β=logbx. Khi đó logab2x3 bằng

A. 32α+β

B. αβ2α+β

C. 3αβ2α+β

D. 3α+βα+2β

Câu 37:

Cho hình chóp tam giác đều có cạnh bên bằng a213 và mặt bên tạo với mặt đáy một góc 600. Tính thể tích V của khối chóp. 

A. V=a333.

B. V=a3.72132.

C. V=a33.

D. V=a3.72196.

Câu 38:

Cho tứ diện ABCD có AB=2, các cạnh còn lại bằng 4, khoảng cách giữa hai đường thẳng AB và CD bằng 

A. 13.

B. 3.

C. 2.

D. 11.

Câu 39:

Tìm tất cả các giá trị của tham số để đồ thị hàm số y=x3+2x2m+2x+m có 2 điểm cực trị và điểm N2;13 thuộc đường thẳng đi qua hai điểm cực trị đó.

A. m=95.

B. m=1.

C. m=59.

D. m=-95.

Câu 40:

Cho hình nón có chiều cao bằng 4a. Một mặt phẳng đi qua các đỉnh của hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 93a2. Thể tích khối nón giới hạn bởi hình nón đã cho bằng

A. 10a3.

B. 30a3π.

C. 100a3π3.

D. 80a3π3.

Câu 41:

Cho hình chóp ngũ giác đều có tổng diện tích tất cả các mặt là S= 4. Giá trị lớn nhất của thể tích khối chóp ngũ giác đều đã cho có dạng maxV=a10btan360, trong đó a,b*,ab là phân số tối giản. Hãy tính T = a+ b

A. 15

B. 17

C. 18

D. 16

Câu 42:

Một loại kẹo có hình dạng là khối cầu với bán kính bằng 1cm được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất, tính tổng diện tích tất cả các mặt xung quanh của vỏ kẹo:

A. 12cm2.

B. 48cm2.

C. 36cm2.

D. 24cm2.

Câu 43:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt thuộc các cạnh SA,SD sao cho 3SM=2SA,3SN=2SD. Mặt phẳng α chứa MN cắt cạnh SB,SC lần lượt tại Q,P. Đặt SQSB=x,V1 là thể tích của khối chóp S.MNPQ, V là thể tích khối chóp S.ABCD. Tìm x để V1=12V.

A. x=2+586.

B. x=1+414.

C. x=1+334.

D. x=12.

Câu 44:

Điều kiện để phương trình 123x2x=m có nghiệm ma;b. Khi đó 2a- b bằng 

A. 3.
B. -8                            
C. -4.     
D. 0.
Câu 45:
Cho các số thực dương x,y thỏa mãn x2+y2=1, tích giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2y12x2+2y2y2+2y+2 bằng     

A. 3.

B. 1324.

C. 33.

D. 1334.

Câu 46:

Cho hàm số f(x) có đạo hàm f'(x) trên R và đồ thị của hàm số f'(x) như hình vẽ sau:

Cho hàm số f(x) có đạo hàm f'(x) trên R và đồ thị của hàm số f'(x) như hình vẽ sau: (ảnh 1)

Hỏi phương trình f12cos2x+1213cos6x14sin22x+724f12=0 có bao nhiêu nghiệm trong khoảng π4;2π?

A. 2

B. 6

C. 4

D. 3

Câu 47:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết AC=43a,BD=4a,SD=22a và SO vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AB và SD bằng

A. 421a7.

B. 321a7.

C. 521a7.

D. 221a7.

Câu 48:

Có bao nhiêu giá trị m để đồ thị hàm số y=x3+mx22m cắt trục Ox tại ba điểm phân biệt có hoành độ lập thành cấp số cộng.

A. 0.                              
B. 1.                              
C. 2.     
D. 3. 
Câu 49:

Hàm số y=xln2x3 nghịch biến trên khoảng   

A. 32;+                     
 B.0;+                        
C.32;52     
D. 0;52
Câu 50:

Cho mặt cầu đường kính AB= 2R Mặt phẳng (P) vuông góc AB tại I (I thuộc đoạn AB) cắt mặt cầu theo một đường tròn (C). Tính

h= AI theo R để hình nón đỉnh A, đáy là (C) có thể tích lớn nhất.

A. h=R.

B. h=R3.

C. h=4R3.

D. h=2R3.