Bất phương trình logarit

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

A.\[2{\log _{\frac{2}{5}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\]

B. \[{\log _{\frac{4}{{25}}}}x + {\log _{\frac{4}{{25}}}}1 \ge {\log _{\frac{2}{5}}}x\]

C. \[{\log _{\frac{2}{5}}}(x + 1) \ge 2{\log _{\frac{2}{5}}}x\]

D. \[{\log _{\frac{2}{5}}}(x + 1) \ge {\log _{\frac{4}{{25}}}}x\]

Câu 2:

Giải bất phương trình \[{\log _2}\left( {3x - 1} \right) \ge 3\]

A.\[x \ge 3\]

B. \[\frac{1}{3} < x < 3\]

C. \[x < 3\]

D. \[x \ge \frac{{10}}{3}\]
Câu 3:

Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]

A.x<0         

B.\[x > - {9^{500}}\]

C.x>0   

D. \[ - {3^{1000}} < x < 0\]
Câu 4:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

A.6

B.8

C.1

D.0

Câu 5:

Tìm tập nghiệm S của bất phương trình \[{\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right)\]

A.\[S = \left( { - \infty ;2} \right)\]

B. \[S = \left( {2;\frac{5}{2}} \right)\]

C. \[S = \left( {\frac{5}{2}; + \infty } \right)\]

D. \[S = \left( {1;2} \right)\]

Câu 6:

Tìm tất cả các giá trị thực của tham số m để bất phương trình \[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\]nghiệm đúng với mọi giá trị \[x \in \left[ {1;64} \right]\]

A.m<0.        

B.\[m \le 0\;\]

C.\[m \ge 0\]

D.m>0.

Câu 7:

Tập nghiệm của bất phương trình \[\ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\] là:

A.\[\left( {1;2} \right) \cup \left( {3; + \infty } \right)\]

B. \[\left( { - \infty ;1} \right) \cup \left( {2;3} \right)\]

C. \[\left( {1;2} \right) \cap \left( {3; + \infty } \right)\]

D. \[\left( { - \infty ;1} \right) \cap \left( {2;3} \right)\]

Câu 8:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

A.\[R \setminus \left\{ 5 \right\}\]

B. \[\left( {0;5} \right) \cup \left( {5; + \infty } \right)\]

C. R

D. \[\left( {0; + \infty } \right)\]

Câu 9:

Tập nghiệm của bất phương trình \[({2^{{x^2} - 4}} - 1).\ln {x^2} < 0\]là:

A.\[\left\{ {1;2} \right\}\]

B. \[\left( { - 2; - 1} \right) \cup \left( {1;2} \right)\]

C. \[\left( {1;2} \right)\]

D. \[[1,2]\]

Câu 10:

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

A.(1;2)                       

B.\[(1; + \infty )\]

C. \[(2; + \infty )\]

D. \[(3; + \infty )\]

Câu 11:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

A.(0;1)

B.\[\left( {\frac{1}{8};1} \right)\]

C. \[(1;8)\]

D. \[\left( {\frac{1}{8};3} \right)\]

Câu 12:

Nghiệm của bất phương trình \[{\log _2}(x + 1) + {\log _{\frac{1}{2}}}\sqrt {x + 1} \le 0\] là :

A.\[ - 1 \le x \le 0\]

B. \[ - 1 < x \le 0\]

C. \[ - 1 < x \le 1\]

D. \[x \le 0\]

Câu 13:

Giải bất phương trình \[{\log _{0,7}}\left( {{{\log }_6}\frac{{{x^2} + x}}{{x + 4}}} \right) < 0\]

A.\[\left( { - 4; - 3} \right) \cup \left( {8; + \infty } \right)\]

B. \[\left( { - 4; - 3} \right)\]

C. \[\left( { - 4; + \infty } \right)\]

D. \[\left( {8; + \infty } \right)\]
Câu 14:

Tìm tập hợp nghiệm S của bất phương trình: \[lo{g_{\frac{\pi }{4}}}({x^2} + 1) < lo{g_{\frac{\pi }{4}}}(2x + 4)\]

A.\[S = ( - 2; - 1)\]

B. \[S = ( - 2; + \infty )\]

C. \[S = (3; + \infty ) \cup ( - 2; - 1)\]

D. \[S = (3; + \infty )\]

Câu 15:

Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình

\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng  x=1x=1 là một nghiệm của bất phương trình.

A.\[S = ( - 2;0) \cup (\frac{1}{3};\,\,3\,]\]

B. \[S = ( - 1;0) \cup (\frac{1}{3};\,\,2\,]\,.\]

C. \[S = \left[ { - 1\,,\,0} \right) \cup (\frac{1}{3};\,\,3\,]\]

D. \[S = ( - 1;0) \cup (1;\,\,3\,]\]

Câu 16:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

A.\[S = (1; + \infty )\, \setminus \{ 2\} \]

B. \[R \setminus \{ 2\} \]

C. \[(2; + \infty )\]

D. \[S = (1; + \infty )\]

Câu 17:

Tìm tập nghiệm S của bất phương trình \[{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) > {\log _2}\left( {{x^2} - x} \right) - 1\]

A.\[S = \left( {2; + \infty } \right)\]

B. \[S = (1;2)\]

C. \[S = (0;2)\]

D. \[S = \left( {1;2} \right]\]

Câu 18:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

A.(0;1)

B.\[\left( {\frac{1}{8};1} \right)\]

C. \[(1;8)\]

D. \[\left( {\frac{1}{8};3} \right)\]

Câu 19:

Giải bất phương trình: \[\log _2^2x - 4033{\log _2}x + 4066272 \le 0\]

A.\[[2016;2017]\]

B. \[\left( {2016;2017} \right)\]

C. \[\left[ {{2^{2016}};{2^{2017}}} \right]\]

D. \[\left[ {{2^{2016}}; + \infty } \right)\]
Câu 20:

Tập nghiệm của bất phương trình \[{\log _3}x \le {\log _{\frac{1}{3}}}(2x)\] là nửa khoảng \[(a;b]\]. Giá trị của \[{a^2} + {b^2}\;\] bằng

A.1

B.4

C.\(\frac{1}{2}\)

D. 8

Câu 21:

Tập nghiệm của bất phương trình \[2017{\log _2}x \le {4^{{{\log }_2}9}}\]là

A.\[0 < x \le {8^{2017}}\]

B. \[0 < x \le \sqrt[{2017}]{{{2^{81}}}}\]

C. \[0 \le x \le {9^{2017}}\]

D. \[0 < x \le \sqrt[{2017}]{9}\]

Câu 22:

Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng

A.\[\frac{{12}}{5}\]

B. \[\frac{5}{{12}}\]

C. \[\frac{{15}}{{16}}\]

D. \[\frac{{16}}{{15}}\]

Câu 23:

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị f′(x) như hình vẽ bên. Bất phương trình \[{\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\] đúng với mọi \[x \in \left( { - 1;4} \right)\;\] khi và chỉ khi

Cho hàm số f(x) liên tục trên  (ảnh 1)

A.\[m \ge 4 - f\left( { - 1} \right)\]

B. \[m \ge 3 - f\left( 1 \right)\]

C. \[m < 4 - f\left( { - 1} \right)\]

D. \[m \ge 3 - f\left( 4 \right)\]

Câu 24:

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

A.36

B.35

C.34

D.Vô số

Câu 25:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

A.\[\left[ {1;9} \right]\]

B. \[\left[ {\frac{1}{9};9} \right]\]

C. \[\left( {0;1} \right] \cup \left[ {9; + \infty } \right)\]

D. \[\left( {0;\frac{1}{9}} \right] \cup \left[ {9; + \infty } \right)\]

Câu 26:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 1)

A.\[m \ge 2.\]

B. \[m \ge 3.\]

C. \[m > 2.\]

D. \[m > 3.\]

Câu 27:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

A.\[m \in \left( {0; + \infty } \right)\]

B. \[m \in \left( { - \frac{3}{4};0} \right)\]

C. \[m \in \left( { - \frac{3}{4}; + \infty } \right)\]

D. \[m \in \left( { - \infty ;0} \right)\]

Câu 28:

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

A.2.

B.3.

C.4.

D.5.

Câu 29:

Tập nghiệm của bất phương trình \[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x}\] là:

A.\[\left( { - \infty ; - 1} \right] \cup \left[ {0;1} \right]\]

B. \[\left[ { - 1;0} \right]\]

C. \[\left( { - \infty ; - 1} \right) \cup \left[ {0; + \infty } \right)\]

D. \[\left[ { - 1;0} \right] \cup \left( {1; + \infty } \right)\]

Câu 30:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

A.403,32 (triệu đồng).

B.293,32 (triệu đồng).

C.412,23 (triệu đồng).

D.393,12 (triệu đồng).