Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 12)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng
Trong không gian Oxyz, cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Số phức \[z = 2 - 3i\] có phần ảo bằng
Cho cấp số cộng \[\left( {{u_n}} \right)\] với \[{u_2} = 6,{u_5} = 21\]. Tính d.
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho và . Tính
Cho hình nón \[\left( N \right)\] có bán kính đáy bằng 3 và đường cao bằng 4. Tính diện tích xung quanh \[{S_{xq}}\] của hình nón \[\left( N \right)\].
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
Cho \[{\log _a}b = 2\] và \[{\log _a}c = \frac{1}{4}\] với \[a,b,c\] là các số thực dương và \[ae1\]. Tính giá trị của biểu thức \[P = {\log _a}\left( {{b^3}{c^4}} \right)\]
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\] là
Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 3}}\]. Đường thẳng d đi qua điểm có tọa độ nào dưới đây?
Trên giá sách có 10 cuốn sách Toán khác nhau, 8 cuốn sách Vật Lý khác nhau và 6 cuốn sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn một cuốn sách?
Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh \[AB = 6,AA' = 8\]. Tính thể tích của khối trụ có hai đáy là hai đường tròn lần lượt ngoại tiếp tam giác ABC và \[A'B'C'\]
Kí hiệu \[{z_1},{z_2}\] là hai nghiệm phức của phương trình \[{z^2} - 4z + 8 = 0\]. Giá trị của \[\left| {{z_1}} \right| + \left| {{z_2}} \right|\] bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Tính đạo hàm của hàm số \[y = {\log _2}\left( {2x + 3} \right)\]
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Cạnh SA vuông góc với mặt phẳng đáy và \[SA = BC = a\]. Thể tích của khối chóp S.ABC bằng
Diện tích phần hình phẳng gạch chéo như hình vẽ được tính theo công thức nào dưới đây?
A.
B.
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Phương trình \[f\left( x \right) - 2 = 0\] có số nghiệm thực là
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x + 2y - z + 3 = 0\] và điểm \[A\left( {1; - 2;2} \right)\]. Tính khoảng cách d từ điểm A đến mặt phẳng \[\left( P \right)\].
Tập nghiệm của phương trình \[{2^{{x^2} - 3x + 6}} = {2^{x + 3}}\] là
Cho hai số phức \[{z_1} = 3 - 2i,{z_2} = 1 + i\]. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức \[{z_1}{z_2}\] có tọa độ là
Cho lăng trụ đứng \[ABC.A'B'C'\] có đáy ABC là tam giác vuông cân tại A, cạnh \[BC = 2a\] và \[A'B = a\sqrt 3 \]. Tính thể tích V của khối lăng trụ \[ABC.A'B'C'\]
Tìm nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\ln }^3}x}}{x}\]
Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oy có tọa độ là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh \[AB = a,SA = a\sqrt 3 \]và SA vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng \[\left( {SAC} \right)\] bằng
Giá trị lớn nhất của hàm số \[y = {x^3} - 3{x^2} - 9x + 35\] trên đoạn \[\left[ { - 4;4} \right]\] bằng
Giải phương trình \[{\log _2}\left( {x + 2} \right) = 1 + {\log _2}\left( {x - 2} \right)\]
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{{{x^2} - 1}}{{{x^3} - 3{x^2} + 2x}}\] là
Hàm số \[y = \frac{{{x^2} + x + 4}}{{x + 1}}\] đạt cực tiểu tại điểm nào dưới đây?
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]
A. \[3x - 2y - 2z - 10 = 0\]
B. \[2x - 3y + 6z - 19 = 0\]
Trong không gian, cho hình trụ \[\left( T \right)\] có chiều cao bằng 7cm và bán kính đáy bằng 5cm. Mặt phẳng song song với trục của \[\left( T \right)\] và cách trục một khoảng bằng 3cm. Tính diện tích thiết diện của hình trụ với mặt phẳng
Cho số phức z thỏa mãn \[z - 4 = \left( {1 + i} \right)\left| z \right| - \left( {4 + 3z} \right)i\]. Môđun của z bằng
Cho hàm số \[f\left( x \right)\] thỏa mãn và . Tích phân bằng
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh \[AC = 2a\sqrt 2 \]. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{2{a^3}}}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng
Trong không gian Oxyz, viết phương trình đường thẳng d đi qua điểm \[A\left( {1; - 2;1} \right)\] và vuông góc với hai đường thẳng \[{d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{1},{d_2}:\frac{{x - 2}}{1} = \frac{{y - 3}}{1} = \frac{{z - 4}}{{ - 1}}\]
A.
B.
Cho hình phẳng \[\left( H \right)\] giới hạn bởi các đường \[y = {x^2},y = 0,x = 0,x = 4\]. Đường thẳng \[y = k\left( {0 < k < 16} \right)\] chia hình \[\left( H \right)\] thành hai phần có diện tích \[{S_1},{S_2}\] như hình vẽ. Tìm k để \[{S_1} = {S_2}\]
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có \[A\left( {1;2;1} \right),B\left( {2; - 1;3} \right),C\left( { - 4;7;5} \right)\]. Độ dài đường phân trong tam giác trong góc của B là
Từ một tấm tôn dạng hình tròn với bán kính \[R = 50cm\], một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp hình tròn trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để thả gà vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?
Cho hai số thực \[a,b > 1\] sao cho tồn tại số thực \[x\left( {x > 0,x \ne 1} \right)\] thỏa mãn \[{a^{{{\log }_b}}}x = {b^{{{\log }_a}{x^2}}}\]. Khi biểu thức \[P = {\ln ^2}a + {\ln ^2}b - \ln \left( {ab} \right)\] đạt giá trị nhỏ nhất thì \[a + b\] thuộc khoảng nào dưới đây?
Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có bảng biến thiên như sau:
Bất phương trình \[f\left( x \right) > {2^x} + m\] đúng với mọi \[x \in \left( { - 1;1} \right)\] khi và chỉ khi
Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x = - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]
Cho hàm số \[y = f\left( x \right)\] xác định và liên tục trên \[\mathbb{R}\backslash \left\{ 0 \right\}\] thỏa mãn \[{\left[ {x.f\left( x \right)} \right]^2} + \left( {2x - 1} \right).f\left( x \right) = x.f'\left( x \right) - 1\] và . Tích phân \[\int\limits_1^9 {f\left( x \right)dx} \] bằng
Gọi S là tập hợp tất cả các số tự nhiên có dạng \[\overline {abcdef} \], trong đó \[a,b,c,d,e,f\] đôi một khác nhau và thuộc tập \[T = \left\{ {0;1;2;3;4;5;6} \right\}\]. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn \[a + b = c + d = e + f\]
Cho phương tình \[{3^x} = \sqrt {a{{.3}^x}\cos \left( {\pi x} \right) - 9} \]. Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn \[\left[ { - 6;12} \right]\] để phương trình đã cho có đúng một nghiệm thực?
Trong không gian Oxyz, cho ba mặt phẳng \[\left( P \right):x - 2y + z - 1 = 0,\left( Q \right):x - 2y + z + 8 = 0,\left( R \right):x - 2y + z - 4 = 0\]. Một đường thẳng d thay đổi cắt ba mặt phẳng \[\left( P \right),\left( Q \right),\left( R \right)\] lần lượt tại \[A,B,C\]. Tìm giá trị nhỏ nhất của \[T = A{B^2} + \frac{{144}}{{A{C^2}}}\]
Có tất cả bao nhiêu giá trị nguyên của tham số m để có đúng hai số phức z thỏa mãn \[\left| {z - 2m + 1 - i} \right| = 10\] và ?
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:
Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]
Cho hàm số \[y = f\left( x \right)\] thỏa mãn . Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Hàm số \[y = {\left( {f\left( x \right)} \right)^2}\] đồng biến trên khoảng nào dưới đây?