Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 19)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Trong không gian Oxyz cho điểm \(A\left( {1;1;2} \right)\) và \(B\left( {3;4;5} \right)\). Tọa độ vectơ \(\overrightarrow {AB} \) là
C. \(\left( { - 2; - 3;3} \right)\).
Cho các số thực dương a; b với \[a \ne 1\]. Mệnh đề nào sau đây đúng?
A. \[{\log _{{a^3}}}\left( {ab} \right) = \frac{1}{3} + \frac{1}{3}{\log _a}b\].
B. \[{\log _{{a^3}}}\left( {ab} \right) = \frac{1}{3}{\log _a}b\].
Cho hàm số \(y = {x^3} - 6{x^2} + 9x + 1\). Mệnh đề nào dưới đây là đúng?
A. Hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).
B. Hàm số đồng biến trên khoảng \(\left( { - \infty ;3} \right)\).
Phương trình \[{9^x} - {3^{x + 1}} + 2 = 0\] có hai nghiệm \[{x_1}\]; \({x_2}\) với \({x_1} < {x_2}\). Đặt \(P = 2{x_1} + 3{x_2}\). Khi đó:
Nếu cấp số nhân \(\left( {{u_n}} \right)\) có công bội q và \({u_1} = \frac{1}{2}\), \({u_5} = 8\) thì
Cho hàm số \[y = f\left( x \right) = {x^3} - 3{x^2} + 2\]có đồ thị như hình 1
Hình 2 là đồ thị của hàm số nào trong các hàm số sau đây?
Đường thẳng d có phương trình \(\frac{{x + 1}}{{ - 1}} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 3}}{3}\) được viết dưới dạng
Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài 2a. Thể tích của khối nón là
Với k và n là hai số nguyên dương tùy ý thỏa mãn \(k \le n\), mệnh đề nào dưới đây đúng?
Trong không gian với hệ tọa độ Oxyz, tọa độ giao điểm của d: \(\frac{{x - 3}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\) và mặt phẳng \(\left( P \right)\): \(2x - y - z - 7 = 0\) là
Cho \(\int\limits_0^1 {f\left( x \right)} = 3\), \(\int\limits_0^1 {g\left( x \right)} = - 2\). Tính giá trị của biểu thức \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Cho lăng trụ đứng tam giác \(ABC.A'B'C'\) có đáy ABC là tam giác vuông cân tại B với \(BA = BC = a\), biết mặt phẳng \(\left( {A'BC} \right)\) hợp với mặt phẳng đáy \(\left( {ABC} \right)\) một góc 60°. Tính thề tích khối lăng trụ đã cho.
Cho số phức z thỏa mãn \(\bar z = 3 + 2i\). Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng –3, phần ảo bằng 2.
B. Phần thực bằng 3, phần ảo bằng 2.
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
x |
\( - \infty \) |
|
–2 |
|
2 |
|
\( + \infty \) |
\(y'\) |
|
+ |
0 |
– |
0 |
+ |
|
y |
\( - \infty \) |
|
3 |
|
0 |
|
\( + \infty \) |
Tìm giá trị cực đại \({y_{CD}}\) và giá trị cực tiểu \({y_{CT}}\) của hàm số đã cho
A. \({y_{CD}} = - 2\) và \({y_{CT}} = 2\).
B. \({y_{CD}} = 3\) và \({y_{CT}} = 0\).
Hàm số nào sau đây là một nguyên hàm có hàm số \(f\left( x \right) = \sin x + {e^x} - 5x\)?
A. \(F\left( x \right) = - \cos x + {e^x} - \frac{5}{2}{x^2} + 1\).
B. \(F\left( x \right) = \cos x + {e^x} - 5x + 3\).
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,b,c,d \in \mathbb{R}} \right)\) có đồ thị như hình vẽ sau đây. Điều kiện của m để phương trình \(a{x^3} + b{x^2} + cx + d - m = 0\) có ba nghiệm phân biệt là
Gọi \({z_1}\) là nghiệm phức có phần ảo dương của phương trình \({z^2} - 2z + 5 = 0\). Trong mặt phẳng tọa độ, điểm biểu diễn của \({z_1}\) có tọa độ là
Hàm số \(f\left( x \right) = {\log _3}\left( {{x^2} - 4x} \right)\) có đạo hàm trên miền xác định là \(f'\left( x \right)\). Chọn kết quả đúng.
A. \(f'\left( x \right) = \frac{{\ln 3}}{{{x^2} - 4x}}\).
B. \(f'\left( x \right) = \frac{1}{{\left( {{x^2} - 4x} \right)\ln 3}}\).
Tìm giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn \(\left[ {2;4} \right]\)
Trong không gian với hệ tọa độ Oxyz, \(A\left( { - 3;4;2} \right)\), \(B\left( { - 5;6;2} \right)\), \(B\left( { - 10;17; - 7} \right)\). Viết phương trình mặt cầu tâm C bán kính AB
A. \({\left( {x + 10} \right)^2} + {\left( {y - 17} \right)^2} + {\left( {z - 7} \right)^2} = 8\).
B. \({\left( {x + 10} \right)^2} + {\left( {y - 17} \right)^2} + {\left( {z + 7} \right)^2} = 8\).
Cho khối lăng trụ đứng \(ABC.A'B'C'\) có \(BB' = a\), đáy ABC là tam giác vuông cân tại B, \(AC = a\sqrt 2 \). Tính thể tích lăng trụ
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:
x |
\( - \infty \) |
|
1 |
|
2 |
|
4 |
|
\( + \infty \) |
\(f'\left( x \right)\) |
|
+ |
0 |
+ |
0 |
– |
0 |
+ |
|
Số điểm cực trị của hàm số \(y = - 2f\left( x \right)\) là
Cho hình chóp S.ABCD có đáy là hình vuông, cạnh bên SA vuông góc với đáy. Biết \(SC = a\sqrt 7 \) và mặt phẳng \(\left( {SDC} \right)\) tạo với mặt phẳng \[\left( {ABCD} \right)\] một góc 30°. Tính thể tích khối chóp S.ABCD.
Cho a là một số thực dương, khác 1. Đặt \({\log _3}a = \alpha \). Tính giá trị của biểu thức \(P = {\log _{\frac{1}{3}}}a - {\log _{\sqrt 3 }}{a^2} + {\log _a}9\) theo \(\alpha \)
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60°. Tính thể tích của khối chóp S.ABCD theo a.
Số nghiệm thực của phương trình \(2{\log _2}\left( {x - 3} \right) = 2 + {\log _{\sqrt 2 }}\sqrt {3 - 2x} \) là
Một khối trụ bán kính đáy là \(a\sqrt 3 \), chiều cao là \(2a\sqrt 3 \). Tính thể tích khối cầu ngoại tiếp khối trụ.
Cho đồ thị hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) như hình vẽ bên. Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{f\left( x \right) - 2}}\) là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên và đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Giá trị của biểu thức \(\int\limits_1^2 {f'\left( x \right)dx} \) bằng
Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau: \({d_1}\): \(\frac{{x - 2}}{2} = \frac{{y + 2}}{1} = \frac{{z - 6}}{{ - 2}}\), \({d_2}\): \(\frac{{x - 4}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{3}\). Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:
A. \(\left( P \right)\): \(x + 8y + 5z + 16 = 0\).
B. \(\left( P \right)\): \(x + 8y + 5z - 16 = 0\).
Nguyên hàm của hàm số \(y = \frac{{\sin 2x}}{{3 + 2\cos x}}\) bằng
A. \(3\ln \left| {3 + 2\cos x} \right| - \cos x + C\).
B. \(\frac{3}{2}\ln \left| {3 + 2\cos x} \right| - \cos x + C\).
Cho tích phân \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{{2x}}dx} \). Đặt \(u = \sqrt {1 - \ln x} \). Khi đó I bằng
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( {1;2; - 1} \right)\), \(B\left( {2;1;0} \right)\) và mặt phẳng \(\left( P \right)\): \(2x + y - 3z + 1 = 0\). Gọi \(\left( Q \right)\) là mặt phẳng chứa A; B và vuông góc với \(\left( P \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là:
Cho các số phức z thỏa mãn \(\left| z \right| = 2\). Biết rằng tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn. Tính bán kính r của đường tròn đó:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
x |
\( - \infty \) |
|
0 |
|
2 |
|
3 |
|
\( + \infty \) |
\(f'\left( x \right)\) |
|
– |
0 |
+ |
0 |
– |
0 |
– |
|
Hàm số \(g\left( x \right) = f\left( {2 - x} \right) + \frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 2x + 1\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên:
x |
\( - \infty \) |
|
1 |
|
3 |
|
\( + \infty \) |
\(y'\) |
|
+ |
0 |
– |
0 |
+ |
|
y |
\( - \infty \) |
|
4 |
|
–2 |
|
\( + \infty \) |
Tìm tất cả các giá trị của m để bất phương trình \(f\left( {\sqrt {x - 1} + 1} \right) \le m\) có nghiệm?
Cho một hộp đựng 12 viên bi, trong đó có 7 viên bi đỏ, 5 viên bi xanh. Lấy ngẫu nhiên một lần 3 viên bi. Tính xác xuất lấy được ít nhất 2 viên bi màu xanh.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB = BC = a\), \(AD = 2a\). Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC theo a.
Có bao nhiêu giá trị nguyên âm của m để phương trình \({\log _2}\left( {2x - 1} \right) = {\log _4}\left( {m{x^2} + 1} \right)\) có nghiệm
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a\), \(BC = a\sqrt 3 \), \(SA = a\) và SA vuông góc với đấy ABCD. Tính với là góc tạo bởi giữa đường thẳng BD và mặt phẳng \(\left( {SBC} \right)\).
Trong hệ tọa độ Oxyz cho điểm \(M\left( {1; - 1;2} \right)\) và hai đường thẳng \({d_1}\): \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = - 1\end{array} \right.\), \({d_2}\): \(\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{1}\). Đường thẳng \(\Delta \) đi qua M và cắt hai đường thẳng \({d_1}\), \({d_2}\) có vectơ chỉ phương là \(\overrightarrow {{u_\Delta }} \left( {1;a;b} \right)\), tính \(a + b\):
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên:
Số nghiệm thực của phương trình \(f\left( {\left| {f\left( x \right)} \right|} \right) = 0\) là
Cho hai số phức \({z_1}\); \({z_2}\) thỏa mãn \(\left| {{z_1}} \right| = 3\) và \({z_2} = \left( {1 + i} \right){z_1}\). Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức \[w = 2z_1^2 + z_2^2\] là đường tròn có bán kính bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị tạo với trục hoành các miền có diện tích là \({S_1}\), \({S_2}\), \({S_3}\), \({S_4}\) như hình vẽ. Biết \({S_1} = 6\), \({S_2} = 1\), \({S_3} = 4\), \({S_4} = 2\) tích phân \(I = \int\limits_0^{\ln 2} {{e^x}f\left( {3{e^x} - 2} \right)dx} \) bằng
Cho hàm số \(y = f\left( x \right)\), bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:
x |
\( - \infty \) |
|
–4 |
|
0 |
|
1 |
|
\( + \infty \) |
\(f'\left( x \right)\) |
\( + \infty \) |
|
–2 |
|
3 |
|
–4 |
|
\( + \infty \) |
Số điểm cực tiểu của hàm số \(y = f\left( {{x^2} - 4x} \right)\) là
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD là đáy lớn \(AD = 2a\), \(AB = BC = CD = a\). Hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABCD} \right)\] là điểm H thuộc đoạn thẳng AC sao cho \[HC = 2AH\]. Góc giữa hai mặt phẳng \[\left( {SCD} \right)\] và đáy \[\left( {ABCD} \right)\] bằng 60°. Tính theo a khoảng cách giữa hai đường thẳng SA và CD.
Trong không gian tọa độ Oxyz, cho \(A\left( { - 3;1;1} \right)\), \(B\left( {1; - 1;5} \right)\) và mặt phẳng \(\left( P \right)\): \(2x - y + 2z + 11 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm A, B và tiếp xúc với mặt phẳng \(\left( P \right)\) tại điểm C. Biết C luôn thuộc đường tròn \(\left( T \right)\) cố định. Tính bán kính r của đường tròn \(\left( T \right)\).
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 2{x^2} + m + 3} \right|\) (m là tham số thực ). Gọi S là tập hợp tất cả giá trị của m sao cho \(2\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 2020\). Tổng giá trị tất cả các phần tử của S bằng
Cho 3 số thực a, b, c thỏa mãn \({\log _2}\frac{{a + b + c}}{{{a^2} + {b^2} + {c^2} + 2}} = a\left( {a - 4} \right) + b\left( {b - 4} \right) + c\left( {c - 4} \right)\). Giá trị lớn nhất của biểu thức \(P = \frac{{a + 2b + 3c}}{{a + b + c}}\).
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;2} \right]\) thỏa mãn \(f\left( 2 \right) = 1\), \(\int\limits_0^2 {{{\left[ {f'\left( x \right)} \right]}^2}} dx = \frac{2}{7}\) và \(\int\limits_0^2 {{x^2}.f\left( x \right)} dx = \frac{{40}}{{21}}\). Tính tích phân \(I = \int\limits_0^2 {f\left( x \right)dx} \).