Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 25)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \[A\left( {1; - 1;2} \right)\] và có một vectơ pháp tuyến \[\vec n = \left( {2;2; - 1} \right).\] Phương trình của (P) là
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?
Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \[\overrightarrow 0 \], có điểm đầu và điểm cuối lấy trong các điểm đã cho là
Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\] và \[f\left( 1 \right) - f\left( 0 \right) = 2\]. Tính \[I = \int\limits_0^1 {\left[ {f'\left( x \right) - {e^x}} \right]dx} \].
Tập nghiệm của bất phương trình \[{3^{2x - 1}} > 27\] là:
Cho khối nón (N) có bán kính đáy bằng r, chiều cao bằng h và đường sinh bằng l. Đẳng thức nào dưới đây đúng?
Cho hai số phức \[{z_1} = 1 + i\] và \[{z_2} = 2 - 3i.\] Tìm số phức liên hợp của số phức \[w = {z_1} + {z_2}.\]
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a. Cạnh bên SA vuông góc với mặt đấy và \[SC = a\sqrt 3 \]. Thể tích của khối chóp đã cho bằng
Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in \mathbb{R}} \right)\] có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây sai?
A. Hàm số đạt cực tiểu tại \[x = 1\].
B. Hàm số đạt cực đại tại \[x = - 1\].
Trong không gian Oxyz, hình chiếu vuông góc của điểm \[A\left( { - 3; - 1;0} \right)\] trên mặt phẳng \[\left( {Oyz} \right)\] có tọa độ là
Cho dãy số \[\left( {{u_n}} \right)\] thỏa mãn \[{u_1} = - 2\] và \[{u_{n + 1}} = {u_n} + 3,\forall n \ge 1\]. Tính \[{u_{12}}\].
Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}}}{{\sqrt {{x^3} + 1} }}\] là
Cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và điểm \[A\left( {1;2;0} \right)\], phương trình đường thẳng qua A và vuông góc với (P) là
Cho a là số thực dương khác 1. Tính \[P = {\log _{{a^2}}}a\].
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = - \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {4m - 8} \right)x + 2\] nghịch biến trên toàn trục số?
Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in \mathbb{R}} \right)\] có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình \[2f\left( {\left| x \right|} \right) - m = 0\] có đúng bốn nghiệm thực phân biệt.
Tập hợp điểm biểu diễn số phức z biết \[\left| {z - \left( {3 - 4i} \right)} \right| = 2.\]
A. Đường tròn có tâm \[I\left( {3; - 4} \right);R = 2.\]
B. Đường tròn tâm\[I\left( { - 3;4} \right);R = 2.\]
Hàm số \[y = {\log _2}\left( {{x^2} - 2x} \right)\] đồng biến trên
Giá trị nhỏ nhất của hàm số \[y = \frac{1}{4}{x^4} + {x^3} - 2{x^2}\] trên đoạn \[\left[ { - 3;3} \right]\] bằng
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = \left( {3 - x} \right)\left( {{x^2} - 1} \right) + 2x,\forall x \in \mathbb{R}\]. Hỏi hàm số \[y = f\left( x \right) - {x^2} - 1\] có bao nhiêu điểm cực tiểu?
Cho \[{\log _a}x = 2,{\log _b}x = 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{a}{{{b^2}}}}}x.\]
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 3a, SA vuông góc với đáy, \[SB = 5a\]. Tính sin của góc giữa cạnh SC và mặt đáy \[\left( {ABCD} \right)\].
Một khối đồ chơi gồm một khối hình trụ (T) gắn chồng lên một khối hình nón (N), lần lượt có bán kính đáy và chiều cao tương ứng là \[{r_1},{h_1},{r_2},{h_2}\] thỏa mãn \[{r_2} = 2{r_1},{h_1} = 2{h_2}\] (hình vẽ). Biết rằng thể tích của khối nón (N) bằng \[20{\rm{c}}{{\rm{m}}^{\rm{3}}}\]. Thể tích của toàn bộ khối đồ chơi bằng
Số nghiệm của phương trình \[{\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\] là:
Cho khối lăng trụ đứng \[ABC.A'B'C'\] có đáy ABC là tam giác vuông cân tại \[A,BC = 2\sqrt 2 \]. Góc giữa mặt phẳng \[AB'\] và mặt phẳng \[\left( {BCC'B'} \right)\] bằng \[30^\circ \]. Thể tích của lăng trụ đã cho bằng
Trong không gian Oxyz, mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} + 2x + 4y - 2z - 3 = 0\] có bán kính bằng
Trong không gian với hệ tọa độ Oxyz cho \[A\left( {1; - 1;2} \right);\;B\left( {2;1;1} \right)\] và mặt phẳng \[\left( P \right):x + y + z + 1 = 0\]. Mặt phẳng (Q) chứa \[A,B\] và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \[y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}\] có ba đường tiệm cận.
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 0\] và \[x = 2\sqrt 3 ,\] biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\left( {0 \le x \le 2\sqrt 3 } \right)\] thì thiết diện là một hình tam giác đều có cạnh là \[x\sqrt 2 .\]
Tìm hệ số của số hạng chứa \[{x^3}\] trong khai triển biểu thức \[P = {x^2}{\left( {2x + 1} \right)^{10}} - {\left( {x - 2} \right)^8}\]
Trong không gian Oxyz, cho hai đường thẳng \[{d_1}:\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{{ - 1}};{d_2}:\frac{{x - 1}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\]. Đường thẳng \[\Delta \] đi qua điểm \[A\left( {1;2;3} \right)\] vuông góc với đường thẳng \[{d_1}\] và cắt đường thẳng \[{d_2}\] có phương trình là
Cho hai số phức \[{z_1}\] và \[{z_2}\] thỏa mãn \[\left| {{z_1}} \right| = 3,\left| {{z_2}} \right| = 4;\left| {{z_1} - {z_2}} \right| = \sqrt {41} .\] Xét các số phức \[z = \frac{{{z_1}}}{{{z_2}}} = a + bi{\mkern 1mu} \left( {a,b \in \mathbb{R}} \right).\] Khi đó \[\left| b \right|\] bằng
Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau
Hàm số \[y = f\left( {{x^2} - 2x} \right)\] nghịch biến trên khoảng nào dưới đây?
Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {1 + 2\sin x} \right)\] là
A. \[{x^2} - \left( {2x - 2} \right)\sin x + C.\]
B. \[{x^2} - 2x.\cos x + 2\sin x + C.\]
Cho f(x) là hàm số chẵn, liên tục trên đoạn \[\left[ { - 1;1} \right]\] và \[\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\]. Kết quả \[I = \int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}dx} \] bằng
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10;10} \right]\] để bất phương trình sau nghiệm đúng \[\forall x \in \mathbb{R}:{\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\]?
Cắt hình trụ (T) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có diện tích bằng \[30{\mkern 1mu} c{m^2}\] và chu vi bằng \[26{\mkern 1mu} cm\]. Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ (T). Diện tích toàn phần của (T) là:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm, liên tục trên \[\mathbb{R}\], gọi \[{d_1},{d_2}\] lần lượt là tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\] và \[y = {x^2}f\left( {2x - 1} \right)\] tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \[{d_1},{d_2}\] vuông góc nhau, khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy, mặt bên \[\left( {SCD} \right)\] hợp với đáy một góc bằng \[60^\circ \], M là trung điểm của BC. Biết thể tích khối chóp S.ABCD bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ M đến mặt phẳng \[\left( {SCD} \right)\] bằng
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \[v\left( t \right) = 10t - {t^2},\] trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, \[v\left( t \right)\] được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là
Cho mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)x + \left( {2 - m} \right)y + 2\left( {m + 1} \right)z - 6\left( {m + 2} \right) = 0.\] Biết rằng khi m thay đổi, mặt cầu (S) luôn chứa một đường tròn cố định. Tọa độ tâm I của đường tròn đó là
Biết phương trình \[{x^4} + a{x^3} + b{x^2} + cx + d = 0,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (a,b,c,d \in \mathbb{R})\] nhận \[{z_1} = - 1 + i,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {z_2} = 1 + i\sqrt 2 \] là nghiệm. Tính \[a + b + c + d.\]
Cho hàm số f(x) có đạo hàm xác định, liên tục \[\left[ {0;1} \right]\] đồng thời thỏa mãn các điều kiện \[f'\left( 0 \right) = - 1\] và \[{\left[ {f'\left( x \right)} \right]^2} = f''\left( x \right)\]. Đặt \[T = f\left( 1 \right) - f\left( 0 \right)\], hãy chọn khẳng định đúng?
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \[f\left( { - 1} \right) = \frac{{13}}{4},f\left( 2 \right) = 6\]. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[g\left( x \right) = {f^3}\left( x \right) - 3f\left( x \right)\] trên \[\left[ { - 1;2} \right]\] bằng
Cho các số thực \[a,b > 1\] và phương trình \[{\log _a}\left( {ax} \right).{\log _b}\left( {bx} \right) = 2020\] có hai nghiệm phân biệt m và n. Tìm giá trị nhỏ nhất của biểu thức \[P = \left( {4{a^2} + 9{b^2}} \right)\left( {36{m^2}{n^2} + 1} \right).\]
Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( {{S_1}} \right)\] có tâm \[{I_1}\left( {1;0;1} \right),\;\] bán kính \[{R_1} = 2\] và mặt cầu \[\left( {{S_2}} \right)\] có tâm \[{I_2}\left( {1;3;5} \right),\] bán kính \[{R_2} = 1.\] Đường thẳng d thay đổi nhưng luôn tiếp xúc với \[\left( {{S_1}} \right),\;\left( {{S_2}} \right)\] lần lượt tại A và B. Gọi \[M,\;m\] lần lượt là giá trị lớn nhất và nhỏ nhất của đoạn AB. Tính giá trị của \[P = M.m\]
Cho hàm số đa thức bậc ba \[y = f\left( x \right)\] có đồ thị như hình bên. Tìm tất cả các giá trị của tham số m để hàm số \[y = \left| {f\left( x \right) + m} \right|\] có ba điểm cực trị.
Cho hình lăng trụ đứng \[{\mkern 1mu} ABCD.A'B'C'D'\] có đáy là hình thoi có cạnh \[4a\], \[A'A = 8a\], \[\widehat {BAD} = {120^{0.}}\]. Gọi \[M,N,K\] lần lượt là trung điểm cạnh \[AB',B'C,BD'\]. Thể tích khối da diện lồi có các đỉnh là các điểm \[A,B,C,M,N,K\] là:
Cho hàm số f(x), \[y = f\left[ {f\left( {2x - 3} \right)} \right]\] và \[y = f\left( {{x^3} + x + 2} \right)\] lần lượt có các đồ thị \[{C_1},{C_2},{C_3}.\] Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \[{C_1}\] là \[y = x + 3\], phương trình tiếp tuyến tại điểm có hoành độ bằng 2 của \[{C_2}\] là \[y = 8x + 5.\] Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của đồ thị \[{C_3}.\]
Một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không quá hai quả cầu màu vàng.