Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 27)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}q = \frac{1}{2}.\] Tính \[{u_5}.\]
Cho a là số thực dương tùy ý và \[a \ne 1.\] Tính \[P = {\log _{\frac{a}{2}}}\frac{{{a^3}}}{8}.\]
Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\sin x + f\left( x \right)} \right]dx} \] bằng
Trong không gian Oxyz, cho hai vectơ \[\vec u = \left( {1; - 2;2} \right)\] và \[\vec v = \left( {2;2; - 1} \right).\] Mệnh đề nào dưới đây là đúng?
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
Cho hình nón (N) có bán kính đáy bằng 3 và đường cao bằng 4. Tính diện tích toàn phần \[{S_{tp}}\] của hình nón (N).
Có bao nhiêu cách xếp 5 bạn Bắc, Hoàng, Lan , Thảo, My vào 5 chiếc ghế kê thành hàng ngang?
Nghịch đảo của số phức \[z = 1 - i + {i^3}\] là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Cho \[{\log _a}x = \frac{1}{2}\] và \[{\log _b}x = \frac{1}{3}\] với \[x > 0\] và \[a,{\rm{ }}b{\rm{ }}\] là các số thực dương lớn hơn 1. Tính giá trị của biểu thức \[P = {\log _{ab}}x.\]
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {x^3} + \frac{1}{{{x^2}}}\] là
Trong không gian Oxyz, cho đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = - 1}\\{z = 3 + 2t}\end{array}} \right.\left( {t \in \mathbb{R}} \right).\] Vectơ nào dưới đây là một vectơ chỉ phương của d?
Một cở sở sản xuất có hai bể nước hình trụ có bán kính đáy bằng nhau, chiều cao đáy lần lượt bằng 3m và 4m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng bán kính đáy và có thể tích bằng tổng thể tích của hai bể nước trên. Chiều cao của bể nước dự định làm bằng
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Phương trình \[5f\left( x \right) - 3 = 0\] có số nghiệm thực là
Kí hiệu \[{z_1},{\rm{ }}{z_2}\] là hai nghiệm phức của phương trình \[{z^2} - 2z + 3 = 0.\] Giá trị của \[\left| {{z_1} - {z_2}} \right|\] bằng
Tìm tập xác định D của hàm số \[y = {\log _2}{\left( {{x^3} - 8} \right)^{2020}}.\]
A. \[D = \mathbb{R}\backslash \left\{ 2 \right\}.\]
B. \[D = \left( {2; + \infty } \right).\]
Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số \[y = {f_1}\left( x \right)\], \[y = {f_2}\left( x \right)\] liên tục trên đoạn \[\left[ {a;\;b} \right]\] và hai đường thẳng \[x = a\], \[x = b\] (như hình vẽ). Cho (H) quay quanh trục hoành, thể tích của khối tròn xoay tạo thành được tính theo công thức nào dưới đây?
A. \[\int\limits_a^b {\left[ {{f_1}^2\left( x \right) - {f_2}^2\left( x \right)} \right]dx} .\]
B. \[\pi \int\limits_a^b {\left[ {{f_1}^2\left( x \right) - {f_2}^2\left( x \right)} \right]dx} .\]
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\frac{{x - 4}}{2} = \frac{{y - 3}}{3} = \frac{{z + 2}}{1}.\] Xét mặt phẳng \[\left( P \right):8x + 12y + mz + 9 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (P) vuông góc với đường thẳng \[d.\]
Giải phương trình \[{2^{{x^2} - 1}} = \sqrt[4]{{{2^{10}}}}.\]
Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên mặt phẳng \[\left( {Oyz} \right)\] có tọa độ là
Biết rằng \[\int\limits_0^6 {\frac{{{x^3}}}{{x + 1}}dx} = a + b\ln 7,\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = a + 2b.\]
Giá trị nhỏ nhất của hàm số \[y = {x^4} - 8{x^2} + 3\] trên đoạn \[\left[ { - 1;3} \right]\] bằng
Tập nghiệm của phương trình \[{\log _2}\left( {2x - 1} \right) + {\log _2}\left( {x + 3} \right) = {\log _2}\left( {{x^2} + 3} \right)\] là
Biết \[M\left( {1;1} \right),{\rm{ }}N\left( {2;0} \right)\] là các điểm cực trị của đồ thị hàm số \[y = a{x^3} + b{x^2} + cx + d.\] Tính giá trị của hàm số tại \[x = 3.\]
Cho các hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] có đồ thị như hình vẽ. Đường thẳng \[x = 5\] cắt trục hoành, đồ thị hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] lần lượt tại các điểm \[A,{\rm{ }}B,{\rm{ }}C.\] Biết rằng \[BC = 2AB.\] Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABCD} \right)\] bằng \[60^\circ .\] Tính thể tích của khối chóp S.ABCD.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Mệnh đề nào dưới đây là đúng?
A. Đồ thị hàm số có đúng một tiệm cận ngang.
B. Đồ thị hàm số có hai tiệm cận ngang.
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và hai điểm \[A\left( {1;0;1} \right),{\rm{ }}B\left( {2;1;0} \right).\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] đi qua hai điểm A và B, đồng thời vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Cho hình lăng trụ đứng \[ABC.A'B'C'\] có đáy ABC là tam giác vuông tại A. Cạnh \[AA' = 2a\sqrt 6 ,{\rm{ }}AC = 2a\sqrt 3 ,\] góc giữa đường thẳng \[A'B\] và mặt phẳng đáy bằng \[45^\circ .\] Tính thể tích V của khối lăng trụ \[ABC.A'B'C'.\]
Cho số phức \[z = a + bi{\rm{ }}\left( {a,{\rm{ }}b \in \mathbb{R}} \right)\] thỏa mãn \[\left| z \right| = 5\] và \[z\left( {2 + i} \right)\left( {1 - 2i} \right)\] là một số thực. Tính \[\left| a \right| + \left| b \right|\].
Cho hàm số \[y = {x^3} - 6{x^2} + mx + 1\]. Có bao nhiêu giá trị nguyên thuộc đoạn \[\left[ {6;12} \right]\] của tham số m để hàm số đồng biến trên khoảng \[\left( {0; + \infty } \right)\].
Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có bảng biến thiên như sau:
Bất phương trình \[f\left( {x + 2} \right) < x{e^x} + m\] đúng với mọi \[x \in \left( { - 1;1} \right)\] khi và chỉ khi
A. \[m > f\left( 1 \right) + \frac{1}{e}.\]
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \[\left( {SAB} \right)\] bằng
Cho hình chóp S.ABCD có đáy là hình chữ nhật, cạnh \[AB = 2a,{\rm{ }}AD = a.\] Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \[\left( {ABCD} \right).\] Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBD} \right)\] bằng
Trong không gian, cho hình trụ (T) có bán kính đáy bằng 5cm. Mặt phẳng (α) song song với trục của (T), cắt (T) theo thiết diện (D) là một hình vuông. Khoảng cách từ trục của (T) đến mặt phẳng chứa (D) bằng 3cm. Tính diện tích của thiết diện (D).
Cho hàm số \[y = {\left| x \right|^3} - 3m{x^2} + 3\left( {5 - m} \right)\left| x \right| - 2{m^2} + 1.\] Có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?
Trong không gian Oxyz, viết phương trình đường thẳng d đi qua điểm \[A\left( {1; - 1;3} \right)\], song song với mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] và cắt đường thẳng \[d':\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}.\]
A. \[d:\frac{{x - 1}}{4} = \frac{{y + 1}}{1} = \frac{{z - 3}}{4}.\]
B. \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 3}}{3}.\]
Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng \[3m\] và \[4m,\] một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp tam giác trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để đổ thóc vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?
Cho phương trình \[\left( {\sqrt x + \sqrt {x - 1} } \right)\left( {m\sqrt x + \frac{1}{{\sqrt {x - 1} }} + 16\sqrt[4]{{{x^2} - x}}} \right) = 1.\] Có bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có đúng hai nghiệm thực phân biệt?
Cho hàm số f(x) liên tục và nhận giá trị dương trên \[\left[ {0;1} \right]\]. Biết \[f\left( x \right).f\left( {1 - x} \right) = 1\] với \[\forall x \in \left[ {0;1} \right]\]. Tích phân \[\int\limits_0^1 {\frac{{dx}}{{1 + f\left( x \right)}}} \] bằng
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Xét \[x,y\] là hai số thực dương thỏa \[1 - \frac{1}{2}{\log _2}\left( {x - y + 2} \right) = {\log _2}\left( {\frac{{x + 1}}{y} + 1} \right).\] Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{x\left( {y + 1} \right) + 10}}{y}.\]
Cho hàm số f(x) liên tục trên đoạn \[\left[ {0;\frac{\pi }{3}} \right]\]. Biết \[f'\left( x \right).\cos x + f\left( x \right).\sin x = 1\] với \[\forall x \in \left[ {0;\frac{\pi }{3}} \right]\] và \[f\left( 0 \right) = 1.\] Tính \[I = \int\limits_0^{\frac{\pi }{3}} {f\left( x \right)dx} .\]
Trong không gian Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 4\] và điểm \[M\left( {2;{\mkern 1mu} 3;{\mkern 1mu} 1} \right)\]. Từ M kẻ được vô số các tiếp tuyến tới (S), biết tập hợp các tiếp điểm là đường tròn (C). Tính bán kính r của đường tròn (C).
Cho hàm số \[f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\]. Gọi \[M,{\rm{ }}m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \[\left[ {0;2} \right]\]. Có bao nhiêu số nguyên a thuộc đoạn \[\left[ { - 3;{\mkern 1mu} 3} \right]\] sao cho \[M \le 2m\]?
Cho Parabol \[\left( P \right):y = {x^2}\] và hai điểm A, B thuộc (P) sao cho \[AB = 2.\] Diện tích hình phẳng giới hạn bởi (P) và đường thẳng \[AB\] đạt giá trị lớn nhất bằng
Trong không gian Oxyz, cho hai điểm \[B\left( {2;{\mkern 1mu} - 1;{\mkern 1mu} - 3} \right)\], \[C\left( { - 6;{\mkern 1mu} - 1;{\mkern 1mu} {\mkern 1mu} 3} \right)\]. Trong các tam giác ABC thỏa mãn các đường trung tuyến kẻ từ B và C vuông góc với nhau, điểm \[A\left( {a;b;0} \right)\], (\[b > 0\]) sao cho giá trị của \[\cos A\] nhỏ nhất. Tính \[a + b.\]
Cho số phức z thỏa mãn \[\left| {z - 1 - i} \right| = 2.\] Biết rằng giá trị lớn nhất của \[{\left| {z + 3 + i} \right|^2} + {\left| {z - 3 + 3i} \right|^2}\] có dạng \[a + b\sqrt {10} \] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[a + b.\]