Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 4: Phép đối xứng tâm

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:
Tự luận

Trong các hình sau, hình nào có tâm đối xứng?

Tồn tại hay không phép biến hình biến mỗi hình phẳng sau đây thành chính nó?

 

Khởi động trang 20 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 2:
Tự luận

Cho điểm O. Gọi f là quy tắc xác định như sau:

a) Với điểm M khác O, xác định điểm M’ sao cho O là trung điểm của MM’ (Hình 1).

b) Với điểm M trùng với O thì f biến điểm M thành chính nó.

Hỏi f có phải là phép biến hình không?

Khám phá 1 trang 20 Chuyên đề học tập Toán 11 Chân trời sáng tạo

 

Câu 3:
Tự luận

Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm M’ = ĐI(M), N’ = ĐI(N), P’ = ĐI(P).

Câu 4:
Tự luận

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó. 

Vận dụng 1 trang 21 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 5:
Tự luận

Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.

Câu 6:
Tự luận

Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của

a) điểm M(3; –4);

b) đường thẳng d: x – 3y + 6 = 0;

c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.

Câu 7:
Tự luận

Trong Hình 6, tìm các số ghi tại điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9.

Vận dụng 2 trang 22 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 8:
Tự luận

Tìm phép đối xứng trục và phép đối xứng tâm biến Hình 7 thành chính nó.

Khám phá 3 trang 22 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 9:
Tự luận

a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).

Thực hành 3 trang 23 Chuyên đề học tập Toán 11 Chân trời sáng tạo

b) Nêu tên một hình có vô số tâm đối xứng.

Câu 10:
Tự luận

Trong Hình 10, hình nào có tâm đối xứng? (Mỗi chữ cái là một hình).

Vận dụng 3 trang 23 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 11:
Tự luận

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:

(C): x2 + y2 – 4x – 5 = 0. Viết phương trình ảnh của (C) qua phép đối xứng tâm O.

Câu 12:
Tự luận

Cho đường tròn (O; R) và điểm I không nằm trên đường tròn. Với mỗi điểm A trên (O; R) ta xét hình vuông ABCD có tâm là I. Điểm C di động trên đường nào khi A di động trên đường tròn (O; R)?

Câu 13:
Tự luận

Cho hình bình hành ABCD có AC cố định còn B di động trên (O; R). Hãy cho biết D di động trên đường nào.

Câu 14:
Tự luận

Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?

Bài 4 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 15:
Tự luận

Trong Hình 12, tìm phép đối xứng biến hình mũi tên (A) thành hình mũi tên (B) và tìm phép đối xứng biến hình mũi tên (B) thành hình mũi tên (C).

Bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 16:
Tự luận

Nghệ thuật cắt giấy Kirigami của Nhật Bản đã sử dụng rất nhiều phép đối xứng khi cắt để tạo ra các hình đẹp. Hãy tìm trục đối xứng và tâm đối xứng của các hình trong Hình 13.

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Câu 17:
Tự luận

Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:

– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).

– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).

– Dùng kéo cắt theo đường đã vẽ (Hình 14c).

– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).

Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.

Bài 7 trang 25 Chuyên đề học tập Toán 11 Chân trời sáng tạo