Chuyên đề Toán 11 (Kết nối tri thức) Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Cho sơ đồ như trên Hình 2.28, ở đó A, B, C, D, E, F là các địa điểm nối với nhau bởi các con đường với độ dài của mỗi con đường được cho như trên hình.
a) Hãy chỉ ra 2 đường đi từ A đến F và so sánh độ dài của hai đường đi đó.
b) Với mỗi đỉnh V của sơ đồ trên Hình 2.28, ta gắn số I(V) là khoảng cách ngắn nhất để đi từ A đến V và gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, ta có ngay I(A) = 0. Dựa vào Hình 2.28, hãy tìm các nhãn vĩnh viễn I(B), I(C) của hai đỉnh kề với A là B, C.
Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.32.
Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.
Tìm đường đi ngắn nhất từ đỉnh S đến mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.
Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.35.
Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.