Đề số 15
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Đồ thị của hàm số đạt cực tiểu tại . Tính tổng
A. 5
B. -11
C. 7
D. 6
Cho hàm số y = f(x) có và . Khẳng định nào sau đây là khẳng định đúng?
A. Đồ thị hàm số đã cho có đúng một tiện cận ngang
B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 3 và x = -3
C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 3 và y = -3
D. Đồ thị hàm số đã cho không có tiệm cận ngang
Tập hợp các điểm trong mặt phẳng tọa đọ biễu diễn số phức z thỏa mãn điều kiện: là hình gì?
A. Một đường thẳng.
B. Một đường Parabol
C. Một đường Elip
D. Một đường tròn
Tìm tập nghiệm của bất phương trình
A.
B.
C.
D. [0;2)
Cho số phức z = 3 -2i. Tìm phần ảo của số phức liên hợp của z?
A. 2i
B. -2i
C. 2
D. -2
Hình đa diện đều có tất cả các mặt là ngũ giác có bao nhiêu cạnh?
A. 60
B. 20
C. 12
D. 30
Biết F(x) là nguyên hàm của và F(2) = 1. Tính
A. ln2 + 1
B.
C.
D. ln2
Trong không gian với hệ tọa độ Oxyz, tính khoảng cách từ điểm M(1;2;-3) đến mặt phẳng (P):x + 2y - 2z - 2 = 0
A. 1
B.
C.
D. 3
Trong không gian với hệ trục tọa độ Oxyz, tính góc giữa hai đường thẳng và
A. 45
B. 30
C. 60
D. 90
Biết rằng khi quay một đường tròn có bán kính bằng 1 quanh đường kính của nó thì ta được một mặt cầu. Tính diện tích mặt cầu đó.
A.
B.
C.
D.
Một người mỗi tháng gửi tiền đều đặn vào ngân hàng một khoản tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết sau 15 tháng người đó có số tiền là 10 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số tiền sau đây?
A. 535.000
B. 635.000
C. 613.000
D. 643.000
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) gọi A, B, C lần lượt là hình chiếu của M trên Ox,Oy,Oz. Mặt phẳng nào sau đây song song với mặt phẳng (ABC)?
A. 4x - 6y - 3z + 12 = 0
B. 3x - 6y - 4z + 12 = 0
C. 4x - 6y - 3z - 12 = 0
D. 6x - 4y - 3z - 12 = 0
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng và vuông góc với mặt phẳng (Q):2x + y - z = 0
A. x + 2y + z = 0
B. x - 2y - 1 = 0
C. x + 2y - 1 = 0
D. x - 2y + z = 0
Một vật chuyển động với vận tốc 10m/s thì tăng tốc với gia tốc tính theo thời gian t là . Tính quãng đường vật đi được trong khoảng 10s kể từ khi bắt đầu tăng tốc.
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu mặt phẳng . Gọi (P) là mặt phẳng vuông góc với (a), (P) song song với giá của véctơ và (P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).
A. 2x - y + 2z - 2 = 0 và x - 2y + z - 21 = 0
B. x - 2y + 2z + 3 = 0 và x - 2y + z - 21 = 0
C. 2x - y + 2z + 3 = 0 và 2x - y + 2z - 21 = 0
D. 2x - y + 2z + 5 = 0 và 2x - y + 2z - 2 = 0
Biết với và b là số nguyên tố. Tính 6a + 7b.
A. 33
B. 25
C. 42
D. 39
Cho n là số nguyên dương thỏa mãn . Hệ số của số hạng chứa của khai triển biểu thức bằng:
A. 18564
B. 64152
C. 192456
D. 194256
Cho và . Tính theo a và b?
A.
B.
C.
D.
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):3x - 2y + 2z - 5 = 0 và (Q):4x + 5y - z + 1 = 0. Các điểm A, B phân biệt thuộc giao tuyến của hai mặt phẳng (P) và (Q). Véctơ cùng phương với vecto nào sau đây?
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh SA = a, vuông góc với mặt phẳng (ABCD) và SA = . Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính ta được kết quả là
A.
B.
C.
D.
Cho hàm số . Khẳng định nào dưới đây đúng?
A.
B.
C.
D.
Cho hình phẳng (H) giới hạn bởi đường cong , trục hoành và đường thẳng x = e. Khối tròn xoay tạo thành khi quay (H) quanh trục hoành có thể tích V bằng bao nhiêu?
A.
B.
C.
D.
Tìm tất cả các giá trị thực của m để phương trình có hai nghiệm phân biệt?
A.
B.
D.
D.
Tìm giá trị nguyên của tham số m để hàm số có ba điểm cực trị sao cho giá trị cực tiểu đạt giá trị lớn nhất.
A. m = 2
B. m = 0
C. m = 1
D. m = 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + y - 2z + m = 0 và mặt cầu (S) có phương trình . Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng .
A. 3
B. 4
C. 2
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng . Tính tỉ số biết V là thể tích của khối chóp S.ABCD?
A.
B.
C. 3
D.
Với giá trị lớn nhất của a bằng bao nhiêu để phương trình có nghiệm?
A. 2
B.
C. 4
D.
Cho hàm số y = f(x) liên tục trên và có đồ thị như hình dưới. Biết rằng trục hoành là tiệm cận ngang của đồ thị. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm phân biệt dương.
A. m > 1
B. 0 < m < 1
C. m < 0
D. 0 < m < 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + z - 10 = 0 điểm A(1;3;2) và đường thẳng . Tìm phương trình đường thẳng D cắt (P) và d lần lượt tại hai điểm M và N sao cho A là trung điểm của cạnh MN
A.
B.
C.
D.
Giả sử a, b, c là các số nguyên thỏa mãn , trong đó . Tính giá trị của S = a + b + c
A. S = 3
B. S = 0
C. S = 1
D. S = 2
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0), B(2;2;2), C(-2;3;1) và đường thẳng . Tìm điểm M thuộc d để thể tích V của tứ diện MABC bằng 3.
A.
B.
C.
D.
Cho hình lập phương ABCD. A’B’C’D’ có cạnh a. Một khối nón có đỉnh là tâm của hình vuông ABCD và đáy là hình tròn nội tiếp hình vuông A’B’C’D’. Kết quả tính diện tích toàn phần của hình nón đó có dạng bằng với b, c là hai số nguyên dương và b > 1. Tính giá trị của bc?
A. bc = 5
B. bc = 8
C. bc = 15
D. bc = 7
Tập nghiệm của bất phương trình có dạng S = [a;b]. Giá trị b - 2a thuộc khoảng nào sau đây?
A.
B. (-4;2)
C.
D.
Cho dãy số xác định bởi và . Tổng bằng
A.
B.
C.
D.
Cho hàm số f(x) có đạo hàm . Số điểm cực trị của hàm số là
A. 5
B. 3
C. 1
D. 2
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;2;0), C(0;0;3), D(2;-2;0). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm O, A, B, C, D
A. 7
B. 5
C. 6
D. 10
Cho bất phương trình (1). Tìm tất cả các giá trị của m để (1) nghiệm đúng với mọi số thực x.
A.
B.
C.
D.
Một hộp đựng 9 viên bi trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Tìm xác suất để 3 viên bi lấy ra có ít nhất 2 viên bi màu xanh.
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) và mặt cầu (S ) có diện tích nhỏ nhất. Khi đó viết phương trình (P):ax + by + cz + 3 = 0. Tính giá trị của T = a + b + c.
A. 3
B. -3
C. 0
D. -2
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm thực?
A. 3
B. 5
C. 4
D. 2
Biết rằng đồ thị hàm số cắt trục hoành Ox tại 4 điểm phân biệt. Khi đó đồ thị hàm số cắt trục hoành Ox tại bao nhiêu điểm?
A. 6
B. 0
C. 4
D. 2
An và Bình cùng tham gia kỳ thi THPTQG năm 2018, ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng ký thi thêm đúng hai môn tự chọn khác trong ba môn Vật lý, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tìm xác suất để An và Bình có chung đúng một môn thi tự chọn và chung một mã đề?
A.
B.
C.
D.
Xét tứ diện OABC có OA, OB, OC đôi một vuông góc nhau. Gọi lần lượt là góc giữa các đường thẳng OA, OB, OC với mặt phẳng (ABC). Khi đó giá trị nhỏ nhất của biểu thức
A. Số khác
B.
C. 48
D. 125
Biết luôn có hai số a và b để là nguyên hàm của hàm số f(x) thỏa mãn . Khẳng định nào sau đây đúng và đầy đủ nhất?
A. a = 1,b = 4
B. a = 1,b = -1
C.
D.
Cho cấp số nhân thỏa , hàm thỏa . Giá trị nhỏ nhất của n để
A. 234
B. 229
C. 333
D. 292
Cho dãy số xác định bởi và với . Biết rằng dãy số thỏa mãn với a, b, c là các số nguyên dương và b < 2019. Tính giá trị của S = a + b - c
A. S = -1
B. S = 0
C. S = 2017
D. S = 2018
Cho hai số phức thỏa mãn và . Tìm giá trị nhỏ nhất m của biểu thức
A.
B.
C.
D.
Cho y = f(x) là hàm số chẵn, liên tục trên biết đồ thị hàm số y = f(x) đi qua điểm
và , tính
A. I = 10
B. I = -2
C. I = 1
D. I = -1
Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương , tam giác là tam giác trung bình của tam giác . Với mỗi số nguyên dương n, kí hiệu n S tương ứng là diện tích hình tròn ngoại tiếp tam giác . Tính tổng
A.
B.
C.
D.
Cho ab, là các số thực dương thỏa mãn . Hỏi giá trị nhỏ nhất của biểu thức sau là:
A. -4
B.
C.
D.