Đề thi thử THPT Quốc gia môn Toán có chọn lọc và lời giải chi tiết (Đề 1)

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Xác định vị trí tương đối giữa đường thẳng d:x=1ty=3+2tz=tvà P:x2yz+6=0 ?

A. Song song.
B. Cắt và vuông góc.
C. Đường thẳng thuộc mặt phẳng.
D. Cắt nhau nhưng không vuông góc.
Câu 2:
Cho hàm số y=ax4+bx2+c  có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?
Cho hàm số y=ax^4+bx^2+c có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng (ảnh 1)

A. a>0,b>0,c>0.

D. a<0,b<0,c>0.

C. a>0,b<0,c>0.

D. a<0,b<0,c>0.

Câu 3:
Dãy số nào là cấp số nhân lùi vô hạn trong các dãy số sau đây?
A. un=1nn*.

B. un+1=12unu1=100n*.

C. un=12nn*.

D. un=2nn*.

Câu 4:
Phương trình 2x=4  có nghiệm là:

A. x=1. 

B. x=2.

C. x=3.

D. x=4.

Câu 5:
Kết quả của I=0π2sinxdx bằng

A. I=1.

B. I=2.

C. I=0.

D. I=22.

Câu 6:
Số phức z=12i  có modul là:

A. 3

B. 75

C. 55

D. 4

Câu 7:

Thể tích khối lăng trụ khi biết diện tích đáy S  và chiều cao h là:

A. S.h

B. 13S.h

C. 16S.h

D. 3S.h

Câu 8:

Cho đồ thị hàm số y=fx như hình vẽ, hàm số nghịch biến trên khoảng nào trong các khoảng sau đây?

Cho đồ thị hàm số y=f(x) như hình vẽ, hàm số nghịch biến trên khoảng nào trong các khoảng sau đây (ảnh 1)

A. 0;2.

B. 1;2.

C. ;2.

D. 0;+.

Câu 9:

Cho hình nón có đường sinh bằng 3, diện tích xung quanh bằng 12π. Bán kính đáy của hình nón là:

A. 4

B. 2
C. 6

D. 3

Câu 10:
Hàm số y=log2x+3 xác định khi:

A. x<3

B. x3

C. x>3

D. x3

Câu 11:
Nguyên hàm của hàm số fx=2x là:

A. 2xln2+C

B. 2x.ln2+C

C. ln22x+C

D. x.2x.ln2+C

Câu 12:
Tọa độ vectơ chỉ phương của đường thẳng d:x=1+ty=2tz=2t  là:

A. ud=1;2;1

B. ud=1;0;2

C. ud=1;2;1

D. ud=1;2;2

Câu 13:

Hệ số của x7  trong khai triển của 3x9  là:

A. C97

B. 9C97

9C97

D. C97

Câu 14:
Tọa độ tâm A  của mặt cầu S:x2+y2+z22x+4y+2z3=0  là:

A. A1;2;1

B. A1;2;1

C. A1;2;1

D. A1;2;1

Câu 15:

Tỉ số diện tích mặt cầu nội tiếp hình lập phương có cạnh bằng 2 và diện tích toàn phần của hình lập phương đó là:

A. π6

B. π4

C. π8

D. π3

Câu 16:

Nếu log3=a thì log9000 bằng:

A. 3+2a

B. a2

C. a2+3

D. 3a2

Câu 17:
Cho hàm số y=fx=ax3+bx2+cx+d có bảng biến thiên như sau:
Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d có bảng biến thiên như sau: (ảnh 1)

A. y=x33x

B. y=x33x+2

C. y=x332x+2

D. y=x3+3x

Câu 18:
Số nghiệm nguyên dương của bất phương trình 13x1192x+3  thuộc 5;5  là:

A. 10

B. 11

C. 8

D. 6

Câu 19:
Cho M1;1;1,N3;2;5  và mặt phẳng P:x+y2z6=0 . Hình chiếu vuông góc của MN lên P  có phương trình là:

A. x27=y23=z+12

B. x27=y23=z+12

C. x27=y23=z+12

D. x27=y23=z+12

Câu 20:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y=2x3+3x2+1:

A. y=x1

B. y=x+1

C. y=x+1

D. y=x1

Câu 21:

Để phương trình log32xmlog3x+1=0  có nghiệm duy nhất nhỏ hơn 1 thì m  nhận giá trị nào trong các giá trị sau đây?

A. m=2.

B. Không tồn tại m .

C. m=2.

D. m=±2.

Câu 22:

Cho hàm số y=fx liên tục trên  và thỏa mãnfx<0,x . Gọi là diện tích hình phẳng giới hạn bởi các đường y=fx,y=0,x=1  x=1 . Mệnh đề nào sau đây là đúng?

A. S=10fxdx+01fxdx

B. S=11fxdx

C. S=11fxdx

D. S=10fxdx+01fxdx

Câu 23:
Cho số phức z thỏa mãn 2+iz=43i . Phần thực của số phức w=iz+2z¯  là:

A. 2

B. 3

C. 4

D. 5

Câu 24:
Cho hàm số y=x4+1C và Parabol P:y=x21 . Số giao điểm của C  P là:

A. 1

B. 2

C. 3

D. 4

Câu 25:
Tập hợp điểm biểu diễn số phức z1+i=1  là:

A. Parabol y=x2.

B. Đường thẳng x=1.

C. Đường tròn tâm I1;1, bán kính R=1.

D. Đường tròn tâm I1;0, bán kính R=1.

Câu 26:
Cho khối chóp SABCD có đáy ABCD là hình vuông cạnh a . Hai mặt phẳng SAB SAD cùng vuông góc với đáy. Biết khoảng cách từ S  đến mặt phẳng ABCD a . Thể tích khối chóp SABCD bằng:

A. VSABCD=a239

B. VSABCD=a339

C. VSABCD=a3

D. VSABCD=a33

Câu 27:

Cho hàm số y=fx có bảng biến thiên như sau:

Đồ thị hàm số đã cho có số đường tiệm cận là:
Cho hàm số y = f(x) có bảng biến thiên như sau Đồ thị hàm số đã cho có số đường tiệm cận là (ảnh 1)

A. 1

B. 2

C. 3

D. 4

Câu 28:
Cho hai mặt phẳng α:x+5y2z+1=0,β:2xy+z+4=0 . Gọi φ là góc giữa hai mặt phẳng α  β thì giá trị đúng của cosφ  là:

A. 56

B. 56

C. 65

D. 55

Câu 29:

Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có bốn chữ số chia hết cho 2?

A. 1149

B. 1029

C. 574

D. 2058

Câu 30:
Cho hình chóp tứ giác đều có các mặt bên là những tam giác đều. Cosin của góc giữa mặt bên và mặt đáy của hình chóp là:

A. 33

B. 32

C. 34

D. 36

Câu 31:

Phương trình tiếp tuyến của đồ thị hàm số y=x3+3xC tại điểm có hệ số góc nhỏ nhất là:

A. y=3x

B. y=3x+3

C. y=3x3

D. y=6x3

Câu 32:

Cho nguyên hàm I=x24x2dx . Nếu đặt x=2sint với tπ2;π2  thì

A. I=2t+cos4t2+C

B. I=2t+sin8t4+C

C. I=2tcos4t2+C

D. I=2tsin4t2+C

Câu 33:

Cho hàm m có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m để giá trị lớn nhất của hàm số y=fx+m trên đoạn 0;2 bằng 4?

Cho hàm m có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m để giá trị lớn nhất của hàm số y = trị tuyệt đối của f(x) + m trên đoạn 0;2 bằng 4? (ảnh 1)

A. 4

B. 1

C. 0

D. 2

Câu 34:
Có một số lượng vi khuẩn đang phát triển ở góc bồn rửa chén trong nhà bếp của bạn. Bạn sử dụng một chất tẩy bồn rửa chén và đã có 99% vi khuẩn bị tiêu diệt. Giả sử, cứ sau 20 phút thì số lượng vi khuẩn tăng gấp đôi. Để số lượng vi khuẩn phục hồi như cũ thì cần thời gian là (tính gần đúng và theo đơn vị phút).

A. 80 phút

B. 100 phút

C. 120 phút

D. 133 phút

Câu 35:

Biết thể tích khối tròn xoay khi cho hình phẳng được giới hạn bởi đồ thị các hàm số y=x22x,y=x2 quay quanh trục Ox  bằng 1k lần diện tích mặt cầu có bán kính bằng 1. Khí đó k bằng:

A. 3

B. 2

C. 12

D. 4

Câu 36:

Cho số phức z z=5. Khi đó, quỹ tích các điểm biểu diễn số phức w=34iz+2+3i là:

A. Đường tròn bán kính r=5.

B. Đường tròn bán kính r=25.

C. Đường elip.

D. Đường thẳng.

Câu 37:
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Thể tích vật thể tạo thành khi quay tứ diện ACB'D' quanh trục là đường thẳng qua AC bằng:

A. a3π26

B. a323

C. a3π33

D. πa322

Câu 38:

Cho mặt cầu S:x22+y12+z12=25 . Mặt phẳng P cắt S theo giao tuyến là một hình tròn có diện tích S=16π  và đi qua A1;1;1 có phương trình:

A. x+2y+2z3=0

B. x+2y+2z+3=0

C. x+2y2z3=0

D. x+2y2z+3=0

Câu 39:

Tổng tất cả các giá trị thực của tham số m để đồ thị hàm số y=mx33mx2+3m3 có hai điểm cực trị A,B sao cho 2AB2OA2+OB2=20 (O là gốc tọa độ) bằng:

A. 611

B. 511

C. 1311

D. 1711

Câu 40:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a  và BAD^=600 . Các mặt phẳng SAD SAB cùng vuông góc với mặt phẳng đáy ABCD . Góc tạo bởi SC với ABCD bằng 600 . Cho  N là điểm nằm trên cạnh AD sao cho DN=2AN . Khoảng cách giữa hai đường thẳng NC SD là:

A. 2a15

B. 3a379

C. 2a379

D. 2a21

Câu 41:

Cho số phức z z5i=3 w=w10 . Khi đó, giá trị nhỏ nhất của wz bằng:

A. 1

B. 2

C. 3

D. 22

Câu 42:

Cho mặt cầu S:x+12+y12+z2=9 và các điểm A1;0;0,B2;8;0,C3;4;0. Điểm MS thỏa mãn biểu thức P=MA+2MB+MC đạt giá trị nhỏ nhất. Khi đó, Pmin  bằng:

A. 5

B. 3

C. 4463

D. 8

Câu 43:

Cho hàm số y=fx  liên tục trên  thỏa mãn 2f3x+fx=8x6 . Khi đó, 01fxdx  bằng:

A. 10

B. 6

C. 8

D. 14

Câu 44:
Cho hàm số y=fx  liên tục trên  f0=1 và đồ thị hàm số y=f'x như hình vẽ bên. Hàm số y=f3x9x31 đồng biến trên khoảng:
Cho hàm số y=f(x)  liên tục trên  R có f(0 )= 1 và đồ thị hàm số  như hình vẽ bên. Hàm số  đồng biến trên khoảng (ảnh 1)

A. 13;+

B. ;0

C. 0;2

D. 0;23

Câu 45:

Cho hàm số y=fx  có đạo hàm và đồng biến trên π6;π3 . Xác định m  để bất phương trình fx<ecosxlnsinxm  nghiệm đúng với mọi xπ6;π3

A. m>eln32fπ3

B. meln32fπ3

C. m<eln12fπ6

D. meln12fπ6

Câu 46:
Cho hàm số y=4x3+2x . Biết rằng đồ thị hàm số cùng với trục hoành và hai đường thẳng có phương trình x=a;x=ba,b0  (hai đường thẳng này cách nhau một đoạn bằng 1) tạo ra hình phẳng có diện tích S . Để diện tích S  là nhỏ nhất thì tổng a+b bằng:

A. 1

B. 2

C. 52

D. 3

Câu 47:
Cho hình lăng trụ ABC.A'B'C'  có đáy là tam giác ABC vuông cân tại A,BC=4a,AA'  vuông góc với mặt phẳng ABC . Góc giữa AB'C   BB'C bằng 600 . Thể tích lăng trụ ABC.A'B'C'  bằng:

A. 4a33

B. 8a323

C. 4a333

D. 8a32

Câu 48:
Cho hàm số y=fx  có đồ thị như hình bên. Có bao nhiêu số nguyên m để bất phương trình x3x2+xm.fx0  nghiệm đúng với mọi x2;52 ?
Cho hàm số  y=f(x) có đồ thị như hình bên. Có bao nhiêu số nguyên m để bất phương trình  (x^3-x^2+x-m)f(x) nhỏ hơn hoặc bằng 0 nghiệm đúng với mọi  (ảnh 1)

A. 1

B. 3

C. 0

D. 2

Câu 49:

Trong không gian Oxyz  với hệ trục tọa độ cho điểm A2;0;0,B0;2;0,C0;0;2 . Có bao nhiêu mặt cầu có tâm nằm trên mặt phẳng α.:x+y+z=0  và tiếp xúc với 3 đường thẳng AB,BC,CA?

A. 1

B. 2

C. 3

D. 4

Câu 50:

Cho hàm số y=fx  có đồ thị như hình vẽ bên. Phương trình fffx=0  có tất cả bao nhiêu nghiệm thực phân biệt?

Cho hàm số y=f(x)  có đồ thị như hình vẽ bên. Phương trình f(f(f(x)))=0  có tất cả bao nhiêu nghiệm thực phân biệt (ảnh 1)

A. 14

B. 5

C. 8

D. 9