ĐỀ THI THỬ THPT QUỐC GIA NĂM HỌC 2019 MÔN TOÁN (Đề số 16)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Cho hàm số y = f(x) liên tục trên R có bảng biến thiên như hình vẽ. Giá trị cực đại của hàm số là:
A. x = -1.
B. x = 1.
C. y = 4.
D. y =0.
Rút gọn biểu thức vectơ ta được kết quả đúng là:
A. .
B.
C.
D.
Cho hình nón (N) có chiều cao h = 4, bán kính đường tròn đáy r = 3. Diện tích xung quanh của hình nón (N) bằng:
A. 12
B. 20
C. 15
D. 30
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;-2) và B(0;-2;3). Mặt phẳng (P) đi qua gốc tọa độ và vuông góc với đường thẳng đi qua hai điểm A, B có phương trình là
A. x - 2y + z = 0.
B. x - y + z = 0.
C. x + y - 3z = 0.
D. x + 3y - 5z = 0.
Trong không gian tọa độ với hệ tọa độ Oxyz, cho ba điểm A(1;2;-1), B(2;-1;3) và C(-3;5;1). Gọi điểm D(a;b;c) thỏa mãn tứ giác ABCD là hình bình hành. Tính tổng T = a + b + c.
A. T = 1.
B. T = 5.
C. T = 3.
D. T = -1.
Cho hàm số có đồ thị (C) và điểm M(1;1) thuộc (C). Gọi là tiếp tuyến của (C) tại M. Đường thẳng đi qua điểm nào sau đây?
A. P(0;-2).
B. Q(3;0).
C. R(-3;0).
D. S(0;2).
Một xe khởi hành từ Krông Năng đi đến Nha Trang cách nhau 175 km. Khi về xe tăng vận tốc trung bình lớn hơn vận tốc trung bình lúc đi là 20 km/giờ. Biết rằng thời gian dùng để đi và về là 6 giờ; vận tốc trung bình lúc đi là:
A. 60 km/giờ.
B. 45 km/giờ.
C. 55 km/giờ.
D. 50 km/giờ.
Bất phương trình có tập nghiệm là
A. S = (-3;1).
B.
C.
D.
Kí hiệu z1, z2 là các nghiệm phức của phương trình Tìm các giá trị của .
A. S = 2.
B. S = -2.
C. S = 5.
D. S = -5.
Cho hình chóp tam giác S.ABC có SA =1,SB = 2,SC = 2 đồng thời các đường thẳng SA, SB, SC đôi một vuông góc. Thể tích của khối cầu ngoại tiếp hình chóp S.ABC bằng
A.
B.
C.
D. .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Khoảng cách từ đường thẳng AB đến mặt phẳng (SCD) bằng
A. .
B.
C. a.
D.
Trong mặt phẳng Oxy cho hai điểm A(2;1), B(-1;2). Xác định tọa độ điểm C thuộc Ox sao cho A, B, C thẳng hàng.
A. (0;5)
B. (0;-1).
C. (5;0).
D. (-1;0).
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau và Phương trình mặt phẳng (P) chứa đường thẳng d1 và song song với đường thẳng d2 là
A. (P): 2x + y - 6 = 0.
B. (P): x + 8y + 5z + 16 = 0.
C. (P): x + 4y + 3z - 12 = 0.
D. (P): x + 8y + 5z - 16 = 0.
Cho biết Giá trị của bằng
A. M = 6.
B. M = 1.
C. M = 5.
D. M = 9.
Trong không gian Oxyz, cho mặt phẳng (P): 2x + 2y - z - 12 = 0 và hai điểm A(1;3;16), B(5;10;21). Gọi là đường thẳng đi qua điểm A đồng thời vuông góc với mặt phẳng (P). Khoảng cách từ điểm B đến đường thẳng bằng
A. 3.
B. 4.
C. 13.
D. 9.
Cho hàm số f(x) có đạo hàm f'(x) thỏa mãn các đẳng thức Tính .
A. I = 2.
B. I = 1.
C. I = -1.
D. I = -2.
Một hộp có 5 bi đỏ, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Xác suất để 2 bi được chọn có đủ hai màu là
A.
B.
C.
D.
Ba chiếc bình hình trụ cùng chứa một lượng nước như nhau, độ cao mức nước trong bình II gấp đôi bình I và trong bình III gấp đôi bình II. Chọn nhận xét đúng về bán kính đáy của ba theo thứ tự lập thành một cấp số nhân với công bội
A. 2
B.
C.
D.
Trong không gian Oxyz, cho bốn điểm A(2;1;0), B(1;-1;3), C(3;-2;2) và D(-1;2;2). Hỏi có bao nhiêu mặt cầu tiếp xúc với tất cả bốn mặt phẳng (ABC), (BDC), (CDA), (DAB)?
A. 7.
B. 8.
C. vô số.
D. 6.
Cho hàm số Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và các đường thẳng x = 0, x = 2 quanh trục hoành bằng
A.
B.
C.
D.
Cho hàm số với a, b là các số hữu tỉ thỏa mãn điều kiện Tính T = a + b.
A. T = -1.
B. T = 2.
C. T = -2.
D. T = 0.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và hai điểm A(2;1;0), B(-2;3;2). Gọi (S) là mặt cầu đi qua hai điểm A, B và có tâm thuộc đường thẳng d. Diện tích của mặt cầu (S) bằng
A.
B.
C.
D.
Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh bằng a .Góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng . Tính thể tích V của khối chóp A'.BCC'B'.
A.
B.
C.
D.
Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số và trục Ox có đúng hai điểm chung phân biệt. Tính tổng T của các phần tử thuộc tập S.
A. T = 12.
B. T = 10.
C. I = 8.
D. I = 32.
Cho hàm số y = f(x) liên tục trên R và Tính
A. I = 4.
B. I = 16.
C. I = 8.
C. I = 8.
Có bao nhiêu giá trị của tham số m để đồ thị hàm số có một tiệm cận ngang là y = 2.
A. 1.
B. 2.
C. 0.
D. vô số.
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) = trên đoạn [-4;-1]. Tính T = M + m.
A. T = 32.
B. T = 16.
C. T = 37.
D. T = 25.
Số hạng không chứa x trong khai triển bằng
A. 5376.
B. -5376.
C. 672.
D. -672.
Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y = f'(x) như hình vẽ. Hàm số có bao nhiêu cực trị?
A. 4.
B. 5.
C. 3.
D. 1.
Cho tập hợp M = {0;1;2;3;4;5;6;7;8;9} có 10 phần tử. Số tập con gồm hai phần tử của M và không chứa phần tử 1 là
A.
B.
C.
D.
Trên tập hợp số phức, cho phương trình với b,c Biết rằng hai nghiệm của phương trình có dạng w + 3 và 2w – 6i +1 với w là một số phức. Tính
A. S = -1841.
B. S = -3.
C. S = 7.
D. S = 2161.
Gọi D là hình phẳng giới hạn bởi đồ thị hàm số cung tròn có phương trình và trục hoành (phần gạch chéo trong hình vẽ). Tính thể tích V của vật thể xoay tròn sinh bởi hình phẳng D khi quay D quanh trục Ox.
A. .
B.
C.
D.
Cho đồ thị hàm số y = f(x) có đạo hàm trên R thỏa mãn f(2) = f(-2) = 0 và đồ thị hàm số y = f'(x) có dạng như hình vẽ. Hàm số nghịch biến trên khoảng nào trong các khoảng sau?
A.
B. (-2;-1)
C. (-1;1)
D. (1;2)
Cho hàm số y = f(x) có bảng biến thiên như sau.
Số nghiệm của phương trình là:
A. 1.
B. vô số.
C. 0.
D. 2.
Cho hàm số (Cm). Có bao nhiêu giá trị của m để đồ thị hàm số (Cm) cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng
A. 0.
B. 3
C. 1
D. 2
Cho tứ diện ABCD có BC = 3, CD = 4, . Góc giữa hai đường thẳng AB và CD bằng Tính thể tích khối cầu ngoại tiếp tứ diện ABCD
A.
B.
C.
D.
Hàm số y = f(x) xác định và có đạo hàm trên R\{-2;2} có bảng biến thiên như sau.
Hàm số y = f(x) xác định và có đạo hàm trên R\{-2;2} có bảng biến thiên như sau.
Gọi k, l lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số Tính giá trị k + l
A. k + l = 2.
B. k + l = 3.
C. k + l = 4.D. k + l = 5.
D. k + l = 5.
Trong không gian với hệ tọa độ Oxyz cho đường thẳng và mặt phẳng (P): 2x - 2y + z + 2 = 0. Mặt phẳng (Q) chứa và tọa với (P) một góc nhỏ nhất có phương trình dạng ax + by + cz + 34 = 0. Tính
A. -220.
B. -240.
C. 240.
D. 220.
Cho tam giác ABC có BC = a, . Trên đường thẳng vuông góc với (ABC) tại A lấy S thỏa mãn SA = a. Hình chiếu vuông góc của A trên SB, SC lần lượt là M, N. Góc giữa hai mặt phẳng (ABC) và (AMN) là
A.
B.
C.
D.
Biết giá trị lớn nhất của hàm số trên đoạn [-5;5] là 2018. Trong các khẳng định dưới đây, khẳng định nào đúng?
A. 1600 < m < 1700.
B. m < 1618.
C. 1500 < m < 1600.
D. m = 400.
Gọi S là tâp hợp tất cả các nghiệm thuộc khoảng (0;2018) của phương trình lượng giác . Tính tổng tất cả các phần tử của S là
A.
B.
C.
D.
Cho tứ diện ABCD có độ dài cạnh Ab thay đổi và AB = x các cạnh còn lại bằng a không đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD là
A.
B.
C.
D.
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = sinx với mọi x và f(0) = 1. Tính
A.
B.
C.
D.
Trong không gian Oxyz cho mặt phẳng (P): 2x + 2y - z + 4 = 0 và các điểm A(2;1;2); B(3;-2;2). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA; MB luôn tạo với mặt phẳng (P) các góc bằng nhau. Biết rằng điểm M thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
A.
B.
C.
D.
Cho hàm số bậc ba có đồ thị nhận hai điểm A(0;3) và B(2;-1) làm hai điểm cực trị. Khi đó số điểm cực trị của hàm số là
A. 5
B. 7
C. 9
D. 11
Cho dãy số thỏa mãn và với Giá trị nhỏ nhất của n để bằng
A. 230
B. 231
C. 233
D. 234
Cho hàm số y = f(x) có đạo hàm trên R. Đồ thị hàm số y = f'(x) như hình vẽ dưới đây.
Khẳng định nào sau đây đúng?
A. Hàm số đb , nghịch biến [1;4].
B. Hàm số đb , nghịch biến [1;9].
C. Hàm số đb [-1;0] , nghịch biến [0;2].
D. Hàm số đb , nghịch biến [0;].
Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mặt phẳng (ABC) và nằm cùng một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B',C' sao cho BB' = a, CC' = 2a. Tính cosin góc giữa hai mặt phẳng (ABC) và (A'B'C').
A.
B.
C.
D.
Cho số phức z thỏa mãn Giá trị nhỏ nhất của biểu thức
A.
B.
C.
D.