Đề thi thử THPTGQ môn Toán cực cực hay có lời giải chi tiết(Đề 7)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A.
B.
C.
D.
Cho hàm số xác định liên tục trên và có bảng biến thiên
Khẳng định nào sau đây là đúng?
A. Hàm số đã cho nghịch biến trên khoảng
B. Hàm số đã cho có giá trị cực đại bằng -3.
C. Hàm số đã cho đồng biến trên khoảng và
D. Hàm số đã cho có điểm cực tiểu là 2
Gọi là điểm cực đại, là điểm cực tiểu của hàm số . Giá trị của biểu thức bằng
A. -1
B. 0
C. 1
D. 2
Biết rằng hàm số đạt giá trị lớn nhất trên đoạn tại . Tính
A. P = 4032
B. P = 2019
C. P = 2020
D. P = 2018
Từ một tấm tôn hình chữ nhật người ta cuộn thành một chiếc thùng hình trụ không đáy (như hình vẽ). Biết tấm tôn có chu vi bằng 120 cm. Để chiếc thùng có thể tích lớn nhất thì chiều dài, chiều rộng của tấm tôn lần lượt là
A. 35 cm; 25 cm
B. 30 cm; 30 cm
C. 40 cm; 20 cm
D. 50 cm; 10 cm
Cho x là số thực lớn hơn 1 và thỏa mãn với . Tính
A.
B.
C.
D.
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số
B.
C.
D.
Tổng tất cả các nghiệm của phương trình bằng
A. 1
B. 2
C. 3
D. 7
Tập nghiệm của bất phương trình là
A.
B.
C. (-1;3)
D.
Quan sát quá trình sao chép tế bào trong phòng thí nghiệm sinh học, nhà sinh vật học nhận thấy các tế bào tăng gấp đôi mỗi phút. Biết sau một thời gian t phút thì có 100000 tế bào và ban đầu có 1 tế bào duy nhất. Khẳng định nào sau đây đúng?
A. 14 < t < 15
B. 15 < t < 16
C. 16 < t < 17
D. 17 < t < 18
Biết F(x) là một nguyên hàm của hàm số và . Tính F(3)
A. F(3) = ln2 - 1
B. F(3) = ln2 + 1
C. F(3) =
D. F(3) =
Tích phân bằng
A.
B.
C.
D.
Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là AB= 8m. Người ra treo một tâm phông hình chữ nhật có hai đỉnh M, N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho 1 cần số tiền mua hoa là 200.000 đồng, biết . Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?
A. 3373400 đồng
B. 3434300 đồng
C. 3437300 đồng
D. 3733300 đồng
Trong mặt phẳng tọa độ, cho hình chữ nhật H có một cạnh nằm trên trục hoành và có hai đỉnh trên một đường chéo là và với a > 0. Biết rằng đồ thị hàm số chia hình H thành hai phần có diện tích bằng nhau, tìm a
A.
B. a = 3
C. a = 4
D. a = 9
Một vật chuyển động theo quy luật với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 8 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
A. 18 m/s
B. 24 m/s
C. 64 m/s
D. 108 m/s
Trong mặt phẳng Oxy, cho điểm M trong hình vẽ bên là điểm biểu diễn số phức z. Mệnh đề nào sau đây là sai ?
A.
B. Số phức có phần ảo bằng 4
C. |z| = 5
D.
Phần thực và phần ảo của số phức lần lượt là
A. 3 và 2
B. 3 và
C. 3 và
D. 3 và
Cho số phức z thỏa mãn . Tính môđun của z
A. |z| = 4
B. |z| = 16
C.
D. |z|= 17
Biết rằng phương trình có một nghiệm phức là . Khẳng định nào sau đây đúng?
A. b + c = 0
B. b + c = 2
C. b + c = 3
D. b + c = 7
Tìm số hạng chứa trong khai triển
A.
B.
C.
D.
Tìm số nguyên dương n thỏa mãn , với là số các hoán vị của tập hợp có n phần tử.
A. 2013
B. 2014
C. 2015
D. 2016
Một nhóm học sinh gồm 6 bạn nam và 4 bạn nữ đứng ngẫu nhiên thành một hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là
A.
B.
C.
D.
Cho dãy số với . Tổng bằng
A.
B.
C.
D.
Một du khách vào trường đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi lần tiền đặt cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khác trên thắng hay thua bao nhiêu tiền?
A. Hòa vốn
B. Thua 20000 đồng
C. Thắng 20000 đồng
D. Thua 40000 đồng
Trong các giới hạn sau đây, giới hạn nào có kết quả bằng 1?
A.
B.
C.
D.
Cho hàm số có đồ thị (C) và điểm . Tập hợp tất cả các giá trị m để từ điểm A kẻ được duy nhất một tiếp tuyến đến (C) là tập . Tính
A. P = 2
B. P = 4
C. P = 6
D. P = 8
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, AD. Hỏi mặt phẳng (MNO) song song với mặt phẳng nào sau đây?
A. (SBC)
B. (SAB)
C. (SAD)
D. (SCD)
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng a. Gọi M, N lần lượt là trung điểm các cạnh AB, B'C'. Côsin góc giữa hai đường thẳng MN và AC bằng
A.
B.
C.
D.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc . Khoảng cách từ O đến mặt phẳng (SBC) bằng
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy là hình chữ nhật, và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của đoạn thẳng AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
A. 30
B. 45
C. 60
D. 90
Cho hình hộp chữ nhật có . Gọi M là trung điểm cạnh AB. Khoảng cách từ D đến mặt phẳng (B'MC) bằng
A.
B.
C.
D.
Hình hộp đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?
A. 1
B. 2
C. 3
D. 4
Tính thể tích V của khối lập phương biết
A.
B.
C.
D.
Một thùng thư, được thiết kế như hình vẽ bên, phần phía trên là nữa hình trụ. Thể tích của thùng đựng thư là
A.
B.
C.
D.
Để tính diện tích xung quanh của một khối cầu bằng đá, người ta thả nó vào trong một chiếc thùng hình trụ có chiều cao , bán kính đường tròn đáy bằng và chứa một lượng nước có thể tích bằng thể tích khối trụ. Sau khi thả khối cầu đá vào khối trụ người ta đo được mực nước trong khối trụ cao gấp ba lần mực nước ban đầu khi chưa thả khối cầu. Hỏi diện tích xung quanh của khối cầu gần bằng kết quả nào được cho dưới đây ?
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC có . Trung điểm cạnh AC thuộc trục tung, trung điểm cạnh BC thuộc mặt phẳng . Tọa độ đỉnh C là
A. C(4;-5;-2)
B. C(4;5;2)
C. C(4;-5;2)
D. C(4;5;-2)
Trong không gian với hệ tọa độ Oxyz cho mặt cầu . Điểm nào sau đây nằm bên trong mặt cầu (S) ?
A. M(3;-2;-4)
B. N(0;-2;-2)
C. P(3;5;2)
D. Q(1;3;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và điểm A(1;-2;3). Khoảng cách từ A đến (P) bằng
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz cho S(-1;6;2), A(0;0;6), B(0;3;0), C(-2;0;0). Gọi H là chân đường cao vẽ từ S của tứ diện. Phương trình nào dưới đây là phương trình mặt phẳng (SBH) ?
A. x + 5y - 7z - 15 = 0
B. 5x - y + 7z + 15 = 0
C. 7z + 5y + z - 15 = 0
D. x - 7y + 5z + 15 = 0
Trong không gian với hệ tọa độ Oxyz cho đường thẳng và điểm A(1;2;3). Tọa độ điểm A' đối xứng với A qua d là
A. A'(3;1;-5)
B. A'(-3;0;5)
C. A'(3;0;-5)
D. A'(3;1;5)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;2) và đường thẳng . Viết phương trình đường thẳng đi qua A vuông góc và cắt d.
A.
B.
C.
D.
Cho hàm số . Đồ thị hàm số như hình bên. Hàm số nghịch biến trên khoảng nào trong các khoảng sau đây?
A.
B.
C. (-1;3)
D. (-2;1)
Cho hàm bậc ba có đồ thị như hình vẽ bên. Hàm số có bao nhiêu điểm cực trị?
A. 3
B. 4
C. 5
D. 6
Cho hàm số liên tục và có đạo hàm trên đoạn và có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để hệ phương trình
có ba nghiệm phân biệt?
A. 8
B. 9
C. 10
D. 11
Xét các số thực a,b thỏa . Biểu thức đạt giá trị khỏ nhất khi
A.
B.
C.
D.
Cho hàm số liên tục, không âm trên thỏa với mọi và . Giá trị của bằng
A. 0
B. 1
C.
D.
Cho hàm số có đồ thị như hình vẽ bên. Hỏi phương trình có bao nhiêu nghiệm thuộc đoạn ?
A. 2
B. 4
C. 5
D. 6
Cho đa giác có 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
A.
B.
C.
D.
Cho tam giác OAB đều cạnh a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho . Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và d. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất.
A. x =
B. x =
C. x =
D. x =
Trong không gian với hệ tọa độ Oxyz cho hai điểm M(1;2;3), N(3;4;5) và mặt phẳng . Gọi là đường thẳng thay đổi nằm trong mặt phẳng (P). Gọi H, K lần lượt là hình chiếu vuông góc của M, N trên . Biết rằng khi thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là
A.
B.
C.
D.