ĐỀ THI THỬ THPTQG NĂM 2019 MÔN TOÁN CHUẨN CẤU TRÚC CỦA BỘ GIÁO DỤC (Đề 13)

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Trong không gian Oxyz, cho đường thẳng  đi qua điểm M2;0;-1 và có một véc tơ chỉ phương a=4;-6;2. Phương trình tham số của  là

A. x=-2+4ty=6tz=1+2t 

B. x=2+2ty=-3tz=-1+t

C. x=4+2ty=-6z=2+t

D. x=-2+2ty=3tz=1+t

Câu 2:

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

A. y=-x4-2x2-1

B. y=-2x4+4x2-1

C. y=x4-2x2-1

D. y=-x4+2x2-1

Câu 3:

Trong không gian Oxyz, cho mặt phẳng P: 3x-z+2=0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của P?

A. n=3;-1;2 

B. n=-1;0;-1 

C. n=3;0;-1

D. n=3;-1;0 

Câu 4:

Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được

A. Hình nón

B. Khối trụ

C. Khối nón

D. Hình trụ

Câu 5:

Cho cấp số cộng un, biết u1=-5, d=2. Số 81 là số hạng thứ bao nhiêu?

A. 44

B. 100

C. 75

D. 50

Câu 6:

Cho hình chóp S.ABCD  có đáy ABCD  là hình vuông cạnh a, SA vuông góc với đáy, SA=a3. Tính thể tích hình chóp S.ABCD

A. a33 

B. a333

C. a33 

D. 3a33 

Câu 7:

Cho số phức z=10-2i . Phần thực và phần ảo của số phức z là

A. Phần thực bằng -10 và phần ảo của số phức bằng -2i.

B. Phần thực bằng -10 và phần ảo bằng -2.

C. Phần thực bằng 10 và phần ảo bằng 2

D. Phần thực bằng 10 và phần ảo bằng 2i

Câu 8:

Cho hàm số y=fx có bảng biến thiên sau đây.

Mệnh đề nào sau đây đúng?

B. Hàm số y=fx đạt cực tiểu tại x=1 

C. Hàm số y=fx đạt cực tiểu tại x=-7

D. Hàm số y=fx không có cực trị

Câu 9:

Hàm số nào dưới đây đồng biến trên tập xác định của nó?

A. y=23x 

B. y=2x

C. y=12x 

D. y=eπx 

Câu 10:

Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp 3 bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn 1 ghế là

A. C53 

B. 6

C. A53 

D. 15

Câu 11:

Họ nguyên hàm của hàm số fx=22x 

A. 4xln 4+C 

B. 14x.ln 4+C

C. 4x+C 

D. 4x. ln 4+C

Câu 12:

Trong không gian Oxyz cho điểm A-2;1;3. Hình chiếu vuông góc của A trên trục Ox tọa độ là

A. 0;1;0 

B. -2;0;0

C. 0;0;3 

D. 0;1;3 

Câu 13:

Cho hàm số fxcó đạo hàm f 'x=xx+12. Hàm số đồng biến trên khoảng nào dưới đây?

A. -1;+

B. -1;0

C. -;-1 

D. 0;+ 

Câu 14:

Cho 01fxdx=3 và12fxdx=2 . Khi đó 02fxdx 

A. 1

B. -1 

C. 5

D. 6

Câu 15:

Với ab là hai số thực dương tùy ý, loga2b3bằng

A. 12log a +13log b 

B. 2log a+log b 

C. 2 log a+ 3log b 

D. 2 log a.3 log b

Câu 16:

Phương trình log54-x3=3log x có nghiệm là

A.  x =4

B. x=3 

C. x=1

D. x=2

Câu 17:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S: x2+y2+z2-6x+4y-12=0. Mặt phẳng nào sau đây cắt (S) theo một đường tròn có bán kính r=3 ?

A.  4x-3y-z-426=0

B. 2x+2y-z+12=0

C. 3x-4y+5z-17+202=0

D. x+y+z+3=0

Câu 18:

Cho một khối trụ có độ dài đường sinh bằng 10cm. Biết thể tích khối trụ bằng 90πcm3. Diện tích xung quanh của khối trụ bằng

A. 36π cm2 

B. 78π cm2 

C. 81π cm2 

D. 60π cm2

Câu 19:

Cho số phức z có phần thực là số nguyên và z thỏa mãn z-2z¯ =-7+3i+z. Mô đun của số phức w=1-z-z2 bằng

A. w=445 

B. w=425 

C. w=37 

D. w=457 

Câu 20:

Gọi Mm lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x2-3x+6x-2 trên đoạn [ 0;1]. Giá trị của M +2m bằng

A. -11

B. -10 

C. 11

D. 10

Câu 21:

Cho hàm số y=fx có đồ thị như hình vẽ. Với giá trị nào của tham số m  thì phương trình fx=m có năm nghiệm phân biệt thuộc đoạn [ 0;5]?

A. m0;1 

B. m1;+

C. m0;1

D. m(0;1] 

Câu 22:

Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng x2+y2+z2-4x+2y-2az+10a=0. Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng 8π là

A. 1;10

B. -10;2

C. -1;11 

D. 1;-11

Câu 23:

Tìm tất cả các giá trị của tham số m để hàm số y=13x3-mx2+m2-m+1x+1 đạt cực đại tại điểm x=1 ?

A. m=2 hoặc m=-1

B. m=2 hoặc m=1 

C. m=1

D. m=2

Câu 24:

Tập nghiệm của bất phương trình log22 x -5 log2x -60 là

A. S = ( 0; 12]

B. S = [ 64 ;+)

C. S = ( 0;12[ 64 ; +)

D. 12;64 

Câu 25:

Gọi x1, x2 là hai nghiệm của phương trình 2x.5x2-2x=1. Khi đó tổng x1+x2 bằng

A. 2-log52 

B. -2+ log52 

C. 2+ log52 

D. 2- log25 

Câu 26:

Trong mặt phẳng Oxyz, gọi A, B, C lần lượt là các điểm biểu diễn các số phức z1=-3i ; z2=2-2i ;z3=-5-i. Gọi G là trọng tâm của tam giác ABC. Khi đó điểm G biểu diễn số phức là

A. z=-1-i 

B. z=-1-2i 

C. z=1-2i

D. z=2-i 

Câu 27:

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác với AB=a, AC=2a BAC^=120°, AA '=2a5. Tính thể tích V của khối lăng trụ đã cho.

A. V=a315

B. V=4a353 

C. V=a3153

D. V=4a35 

Câu 28:

Cho hình phẳng giới hạn bởi các đường y=tan x, y=0; x=0; x=π4 quay xung quanh trục Ox. Tính thể tích vật thể tròn xoay được sinh ra

A. π ln 22

B. π ln34 

C. π4 

D. π ln 2 

Câu 29:

Cho hàm số fx=ax3+bx2+cx+d a,b,c,d có đồ thị như hình vẽ. Đồ thị hàm số gx=x2+4x+3x2+xxfx2-2fx

 có bao nhiêu đường tiệm cận đứng?

A. 3

B. 2

C. 6

D. 4

Câu 30:

Cho tứ diện ABCD AB=AC=AD  BAC^=BAD^=60°. Xác định góc giữa hai đường thẳng AB CD

A. 90° 

B. 45° 

C. 60° 

D. 30° 

Câu 31:

Cho một miếng tôn hình tròn tâm O, bán kính R. Cắt bỏ một phần miếng tôn theo một hình quạt OAB và gò phần còn lại thành một hình nón đỉnh O không có đáy (OA trùng với OB). Gọi SS ' lần lượt là diện tích của miếng tôn hình tròn banđầu và diện tích của miếng tôn còn lại. Tìm tỉ số S 'S để thể tích của khối nón đạt giá trị lớn nhất

A. 22 

B. 14

C. 13 

D. 63 

Câu 32:

Số các giá trị nguyên của tham M[ -2019;2019] để hàm số y=m+1x2-2mx+6mx-1 đồng biến trên khoảng 4;+?

A. 2034

B. 2018

C. 2025

D. 2021

Câu 33:

Cho các số phức z thỏa mãn z+1=2. Biết rằng tập hợp các điểm biểu diễn các số phức w=1+i8z+i là một đường tròn. Bán kính r của đường tròn đó là

A. 9

B. 36

C. 6

D. 3

Câu 34:

Tính  tổng  các  giá trị nguyên của tham số m-50;50 sao cho bất phương trình mx4-4x+m0 nghiệm đúng với mọi x 

A. 1272

B. 1275

C. 1

D. 0

Câu 35:

Tìm tất cả các giá trị thực của tham số m để phương trình log2cos x-mlog cos2x-m2+4=0 vô nghiệm

A. m2; 2 

B. m-2; 2 

C. m-2;2

D. m-2;2

Câu 36:

Cho hàm số  y=fx có đạo  hàm liên tục trên đoạn [ -2;1] thỏa mãn f0=1 và fx2.f 'x=3x2+4x+2 Giá trị lớn nhất của hàm số y=fx trên đoạn [-2;1] là:

A. 2163 

B. 183

C. 163 

D. 2183

Câu 37:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy và SBD^=60°. Tính khoảng cách giữa hai đường thẳng ABSO.

A. a52 

B. a22 

C. a25 

D. a55 

Câu 38:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A1;0;2, B3;1;-1 và mặt phẳng P: x+y+z-1=0. Gọi Ma,b,cP sao cho 3MA-2MB đạt giá trị nhỏ nhất. Tính s=9a+3b+6c.

A.  4

B. 3

C.  2

D. 1

Câu 39:

Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?

A. 108864

B. 80640

C. 145152

D. 217728

Câu 40:

Cho hàm số fx thỏa mãn f 'x2+f ''x=15x4+12x, x và f0=f '0=1. Giá trị của f12 là

A. 10

B. 8

C. 52 

D. 92 

Câu 41:

Cho x,y>0 và thỏa mãn x2-xy+3=02x+3y-140. Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức P=3x2y-xy2-2x3+2x?

A. 8

B. 0

C. 4

D. 12

Câu 42:

Xét các số thực dương x;y thỏa mãn log31-yx+3xy=3xy+x+3y-4. Tìm giá trị nhỏ nhất Pmin của biểu thức P = x + y.

A. Pmin=43-43 

B. Pmin=43+43 

C. Pmin=43+49

D. Pmin=43-49

Câu 43:

Một bình đựng nước dạng hình nón (không có đáy) đựng đầy nước. Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π dm3. Biết khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước. Tính thể tích nước còn lại trong bình.

A. 27π dm3 

B. 6π dm3

C. 9π dm3

D. 24π dm3 

Câu 44:

Khi cắt hình nón có chiều cao 16 cm và đường kính đáy 24 cm bởi một mặt phẳng song song với đường sinh của hình nón ta thu được thiết diện có diện tích lớn nhất gần với giá trị nào sau đây?

A.  170

B. 260

C.  294

D.  208

Câu 45:

Cho hình hộp chữ nhật ABCD.A’B’C’D’. Khoảng cách giữa AB B’C2a55, khoảng cách giữa  BC AB’ 2a55, khoảng cách giữa AC BD’ a33. Tính thể tích khối hộp ABCD.A’B’C’D’.

A. 4a3 

B. 3a3 

C. 5a3 

D. 2a3

Câu 46:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x3-2m+1x2+3mx-5 có ba điểm cực trị?

A. Vô số

B. 3

C. 2

D. 1

Câu 47:

Cho hai hàm số y=x3+ax2+bx+c( a,b,c) có đồ thị (C) và y=mx2+nx+p(m,m,p) có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?

A. 0;1 

B. 1;2 

C. 2;3 

D. 3;4 

Câu 48:

Trong không gian Oxyz, mặt cầu S đi qua điểm A2;-2;5 và tiếp xúc với ba mặt phẳng P: x=1 , Q: y=-1 và R: z=1 có bán kính bằng

A. 3

B. 1

C. 23 

D. 33

Câu 49:

Cho z1, z2 là hai số phức thỏa mãn điều kiện z-5-3i=5 đồng thời z1-z2=8. Tập hợp các điểm biểu diễn số phức w=z1+z2 trong mặt phẳng tọa độ Oxy là đường tròn có phương trình

A. x-102+y-62=36 

B. x-102+y-62=16

C. x-522+y-322=9 

D. x-522+y-322=94 

Câu 50:

Cho hàm số y =f(x) có đạo hàm f '(x) trên tập số thực  và đồ thị của hàm số y = f(x) như hình vẽ. Khi đó, đồ thị của hàm số y=fx2 có

A. 2 điểm cực đại, 2 điểm cực tiểu

B. 2 điểm cực tiểu, 3 điểm cực đại

C. 1 điểm cực đại, 3 điểm cực tiểu

D. 2 điểm cực đại, 3 điểm cực tiểu