ĐỀ THI THỬ THPTQG NĂM 2019 MÔN TOÁN CHUẨN CẤU TRÚC CỦA BỘ GIÁO DỤC ( Đề 2)

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Đồ thị hàm số nào sau đây có 3 đường tiệm cận?

A. y=x+1x2+4x+8

B. y=x+2x-1

C. y=x+2x2+3x+6

D. y=x+1x2-9

Câu 2:

Trong mặt phẳng Oxy, cho điểm A2;5. Phép tịnh tiến theo vectơ v=1;2 biến điểm A thành điểm nào?

A. A'(3;1)

B. A'(1;6)

C. A'(3;7)

D. A' (4;7)

Câu 3:

Trong các hình dưới đây hình nào không phải đa diện lồi?

A. Hình (II).

B. Hình (I).

C. Hình (IV).

D. Hình (III).

Câu 4:

Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng P:2x-y-2z-4=0 và điểm A-1;2;-2. Tính khoảng cách d từ A đến mặt phẳng (P).

A. d=59

B. d=43

C. d=89

D. d=23

Câu 5:

Trong không gian với hệ trục tọa độ Oxyz, các véctơ đơn vị trên các trục Ox, Oy, Oz lần lượt là i, j, k, cho điểm M(2;-1;1). Khẳng định nào sau đây là đúng?

A. OM=2i-j+k

B. OM=i+j+2k

C. OM=k+j+2i

D. OM=2k-j+i

Câu 6:

Giới hạn limx+x-3x+2 bằng:

A. –32.

B. 3.

C. 1.

D. 2.

Câu 7:

Trong không gian với hệ toạ độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu có tâm I(1;2;-1) và tiếp xúc với mặt phẳng P=x-2y-2z-8=0?

A. x+12+y+22+z-12=3

B. x-1+y-22+z+12=9

C. x-12+y-22+z+12=3

D. x+1+y+22+z-12=9

Câu 8:

Cho dãy số un xác định bởi:  u1=-2un+1=-110.un.  Chọn hệ thức đúng:

A. un=un-1+un+12n2

B. un=un-1.un+1n2

C. un là cấp số nhân có công bội q=-110.

D. un=-2110n-1.

Câu 9:

Bất phương trình 2x2-3x+4122x-10 có bao nhiêu nghiệm nguyên dương?

A. 6

B. 3

C. 2.

D. 4.

Câu 10:

Tam giác ABCAB=5 ,BC=8 ,CA=6. Gọi G là trọng tâm tam giác. Độ dài đoạn thẳng BG bằng bao nhiêu?

A. 6.

B. 1423

C. 1422

D. 4.

Câu 11:

Cho hàm số f(x) xác định trên khoảng K chứa A. Hàm số f(x) liên tục tại x=a  nếu

A. limxa+f(x)=limxa-f(x)=a

B. f(x) có giới hạn hữu hạn khi xa

C. limxa+f(x)=limxa-f(x)=+.

D. limxaf(x)=fa.

Câu 12:

Trong không gian Oxyz, cho điểm M2;0;1. Gọi A, B lần lượt là hình chiếu của M trên trục Ox và trên mặt phẳng (Oyz). Viết phương trình mặt trung trực của đoạn AB.

A. 4x-2z-3=0.

B. 4x-2y-3=0

C. 4x-2z+3=0.

D. 4x+2z+3=0.

Câu 13:

Tổng các nghiệm của phương trình log22x-log29.log3x=3 là:

A. 2.

B. 2.

C. 8.

D. 173

Câu 14:

Biết f'x=x29-x2, số điểm cực trị của hàm f(x) là.

A. 1.

B. 2.

C. 0.

D. 3.

Câu 15:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x+1x+2, trục hoành và đường thẳng x=2 là

A. 3+2 ln2.

B. 3+ln 2

C. 3-2ln 2

D. 3-ln 2

Câu 16:

Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y=xex2 ,y=0 , x=0, x=1  xung quanh trục Ox là.

A. V=9π4

B. V=π2e

C. V=πe-2

D. V=e-2

Câu 17:

Cho các mệnh đề sau

(I) Hàm số fx=sin xx2+1 là hàm số chẵn.

(II) Hàm số fx=3 sinx +4 cosx có giá trị lớn nhất là 5.

(III) Hàm số fx=tan x tuần hoàn với chu kì 2π.

(IV) Hàm số fx=cosx đồng biến trên khoảng 0;π.

Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?

A. 4.

B. 2.

C. 3.

D. 1.

Câu 18:

Cho ba số thực dương a, b, c khác 1. Các hàm số y=logax, y=logbx, y=logcx có đồ thị như hình vẽ.

 

Trong các mệnh đề sau, mệnh đề nào đúng?

A. b>a>c

B. Hàm số y=logcx đồng biến trên (0;1).

C. y=logbx <x(1;+).

D. Hàm số y=logaxnghịch biến trên (0;1).

Câu 19:

Hệ phương trình nào sau đây có duy nhất một nghiệm?

A. x+y=1x-2y=0 

B. -x+y=32x-2y=6

C. -3x+y=1-6x+2y=0 

D. 5x+y=310x+2y=-1

Câu 20:

Biết hàm số y=f(x) có f'(x)=3x2+2x-m+1, y=f(2)=1 và đồ thị của hàm số f(x) cắt trục tung tại điểm có tung độ bằng –5. Hàm số f(x) là

A. x3+x2+4x-5

B. x3+x2-3x-5

C. x3+2x2-5x-5

D. 2x3+x2-7x-5

Câu 21:

Trong tập số phức , phương trình 4z+1=1-i có nghiệm là:

A. z=5-3i

B. z=1+2i. 

C. z=2-i

D. z=3+2i.

Câu 22:

Giá trị lớn nhất của hàm số y=x3-3x+5 trên đoạn 0;32 là:

A. 7

B. 318.

C. 3

D. 5.

Câu 23:

Cho cấp số cộng un có u4=-12; u14=18. Tìm u1, d  của cấp số cộng?

A. u1=-21,d=3

B. u1=-21 ,d=-3

C. u1=20, d=-3

D. u1=-22 , d=3

Câu 24:

Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm:

A. A={(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)(6,1),(6,2),(6,3),(6,4),(6,5)}

B. A={(6,1),(6,2),(6,3),(6,4),(6,5)}

C. A= {(1,6),(2,6),(3,6),(4,6),(5,6)}

D. A={(1,6),((2,6),(3,6),(4,6),(5,6),(6,6)}

Câu 25:

Xét tích phân I=12x.ex2. Sử dụng phương pháp đổi biến số với u=x2, tích phân I  được biến đổi thành dạng nào sau đây:

A. I=212eudu

B. I=1212eudu

C. I=1212eudu

D. 212eudu

Câu 26:

Cho các khẳng định:

(I): Hàm số y=2 đồng biến trên .

(II): Hàm số y=x3-12x nghịch biến trên khoảng (-1;2).

(III): Hàm số y=2x-5x-2 đồng biến trên các khoảng -;2 và 2;+ 

Trong các khẳng định trên có bao nhiêu khẳng định đúng?

A. 0.

B. 2.

C. 3.

D. 1.

Câu 27:

Cho các số phức z thỏa mãn z=1. Tập hợp các điểm biểu diễn các số phức w=5-12iz+1-2i trong mặt phẳng Oxy

A. Đường tròn C: x-12+y+22=13.

B. Đường tròn C: x+12+y-22=13.

C. Đường tròn C: x+12+y-22=169.

D. Đường tròn

C : (x-1)2+y+22=169

Câu 28:

Cho hàm số y=f(x) có đồ thị trên đoạn [-2;4] như hình vẽ dưới đây.

 

Phương trình f(x)=2 có tất cả bao nhiêu nghiệm thực thuộc đoạn [-2;4]?

A. 1.

B. 3.

C. 4.

D. 2.

Câu 29:

Một miếng tôn hình chữ nhật có chiều dài 10,2 dm , chiều rộng 2πdm được uốn lại thành mặt xung quanh của một chiếc thùng đựng nước có chiều cao 2πdm (như hình vẽ). Biết rằng chỗ ghép mất 2 cm. Hỏi thùng đựng được bao nhiêu lít nước?

A. 20 lít.

B. 50 lít.

C. 100 lít

D. 20,4 lít.

Câu 30:

Cho hàm số y=ax4+bx2+c có đồ thị như hình vẽ .

 

Mệnh đề nào dưới đây đúng?

A. a>0, b<0, c>0 

B. a<0, b>0, c<0

C. a>0, b<0, c<0

D. a<0, b<0, c<0. 

Câu 31:

Bạn A có một tấm bìa hình tròn (như hình vẽ), bạn ấy muốn dùng tấm bìa đó tạo thành một cái phễu hình nón, vì vậy bạn phải cắt bỏ phần quạt tròn AOB rồi dán hai bán kính OAOB lại với nhau. Gọi x là góc ở tâm của hình quạt tròn dùng làm phễu. Giá trị của x để thể tích phễu lớn nhất là

A. 6-26π3

B. π2

C. π3 

D. 26π3

Câu 32:

Cho hình lăng trụ đứng ABC.A'B'C' AB=1, AC=2, BAC=120°. Giả sử D là trung điểm của cạnh CC' BDA'=90°. Thể tích cửa khối lăng trụ ABC.A'B'C' bằng 

A. 152

B. 315

C. 215

D. 15

Câu 33:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:x+31=y-2-1=z-12, d2: x-22=y-11=z+11 và mặt phẳng P: x+3y+2z-5=0 Đường thẳng vuông góc với (P), cắt cả d1  và d2 có phương trình là:

A. x+71=y-63=z+72

B. x+31=y+23=z-12

C. x1=y3=z+22

D. x+41=y-33=z+12

Câu 34:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên bằng SA vuông góc với đáy, SA=a. Tính khoảng cách từ A đến mặt phẳng (SBC)?

A. d=a32

B. d=a22

C. d=a62

D. d=a63

Câu 35:

Tìm tất cả các giá trị của m để phương trình 2x-6=mx-1 có 4 nghiệm phân biệt.

A. m0;16;+

B. m0;26;+

C. m0;35;+

D. m0;14;+.

Câu 36:

Tìm hệ số của x3 sau khi khai triển và rút gọn các đơn thức đồng dạng của 1x-x+2x29, x0

A. –2940

B. 3210.

C. 2940.

D. –3210

Câu 37:

Giải phương trình sin2x+sin23x-2cos22x=0.

Ax=kπ, x=π8+kπ2

B. x=π2+kπ, x=π8+kπ4

C. x=kπ, x=π8+kπ4

D. x=π2+kπ, x=π8+kπ2

Câu 38:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, BD=a. Cạnh SA vuông góc với mặt đáy và SA=a62. Tính góc giữa hai mặt phẳng (SBC) và (SCD).

A. 60°

B. 120°

C. 45°

D. 90°

Câu 39:

Cho lăng trụ ABC.A'B'C' có AB=AC=a, BC=SA. Cạnh bên AA'=2a. Bán kính mặt cầu ngoại tiếp tứ diện AB'C'C bằng

A. 2a

B. 5a

C. 3a.

D. a.

Câu 40:

Cho a, b, c >0. Xét các bất đẳng thức:

 I) 1+ab1+bc1+ca8

II)2a+b+c2b+c+a2c+a+b64 

III) a+b+c< abc.

Bất đẳng thức nào đúng?

A. Cả ba đều đúng

B. Chỉ I) đúng

C. Chỉ II) đúng

D. Chỉ I) và II) đúng

Câu 41:

Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển là môn toán.

A. 542

B. 27

C. 121.

D. 3742.

Câu 42:

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a, AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45°. Khi đó thể tích khối chóp S.ABCD

A. 2a3

B. 23a3

C. 33a3

D. 13a3

Câu 43:

Để đổ bê tông xây một cây cột cầu hình trụ đường kính 1 m và cao 5m cần bao nhiêu khối bê tông? (cho biết π3,14)

A. 7,85m3 

B. 15,7m3

C. 3,972m3

D. 5,235m3

Câu 44:

Cho hàm số y=2x+2x-1   có đồ thị là (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất.

A. : y=-x-1 : y=-x+7

B. : y=-x-3: y=-x+2

C. : y=-x-1: y=-x+17

D. : y=-x-21: y=-x+7

Câu 45:

Tìm giá trị nhỏ nhất của biểu thức P=logab22+6logbaba2 với a, b là các số thực thỏa mãn b>a>1.

A. 30.

B. 40.

C. 60.

D. 50

Câu 46:

Cho tứ diện ABCD có thể tích là V. Điểm M thay đổi trong tam giác BCD. Các đường thẳng qua M và song song với AB, AC, AD lần lượt cắt các mặt phẳng (ACD), (ABD), (ABC) tại N, P, Q. Giá trị lớn nhất của khối MNPQ là:

A. V27

B. V16

C. V8

D. V54.

Câu 47:

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-3z-12=0. Gọi M(a;b;c) thuộc (P)  sao cho MA2+MB2+3MC3 đạt giá trị nhỏ nhất. Tính tổng a+b+c.

A. 3.

B. 2

C. 2.

D. –3.

Câu 48:

Cho z=x+yi với x,y là số phức thỏa mãn điều kiện z+2-3iz+i-25. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x2+y2+8x+6y. Tính M+m.

A. 60+210

B. 1566-2010.

C. 60-210.

D. 1565+2010

Câu 49:

Ông Nam gửi 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn một năm với lãi suất là 12% một năm. Sau n năm ông Nam rút toàn bộ tiền (cả vốn lẫn lãi). Tìm n nguyên dương nhỏ nhất để số tiền lãi nhận được hơn 40 triệu đồng. (Giả sử rằng lãi suất hàng năm không thay đổi).

A. 3.

B. 2.

C. 4.

D. 5.

Câu 50:

Ông An bắt đầu đi làm với mức lương khởi điểm là 1 triệu đồng một tháng. Cứ sau 3 năm thì ông An được tăng lương 40%. Hỏi sau tròn 20 năm đi làm tổng tiền lương ông An nhận được là bao nhiêu (làm tròn đến hai chữ số thập phân sau dấu phẩy)?

A. 717,74 triệu

B. 858,72 triệu

C. 768,37 triệu. 

D. 726,74 triệu.