Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 6)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Hình hộp chữ nhật đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?
A. 2
B. 1
C. 3
D. 4
Cho số phức z = (1-2i)2. Tính mô đun của số phức
A.
B.
C.
D.
Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt.
A.
B.
C.
D.
Trên đồ thị có bao nhiêu điểm M mà tiếp tuyến với (C) tại M song song với đường thẳng
A. 0
B. 4
C. 3
D. 2
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng?
A.
B.
C.
D.
Cho hàm số y = f(x) có . Tìm tập hợp tất cả các giá trị thực của x để
A.
B.
C.
D.
Cho hàm số y = f(x) có đạo hàm . Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên R
B. Hàm số đồng biến trên (0;2)
C. Hàm số nghịch biến trên (-∞;0) và (2;+∞)
D. Hàm số đồng biến trên (2;+∞)
Cho cấp số nhân (un) có u1 = 2 và biểu thức 20u1-10u2+u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ bảy của cấp số nhân (un) ?
A. 2000000.
B. 136250.
C. 39062.
D. 31250.
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3) đồng thời vuông góc với hai mặt phẳng là:
A.
B.
C.
D.
Đạo hàm của hàm số y = ln(5-3x2) là:
A.
B.
C.
D.
Đặt a = log25 và a = log35. Biểu diễn đúng log65 theo a, b là:
A.
B.
C.
D.
Cho số phức z thỏa mãn Môđun của số phức z bằng
A.
B.
C.
D.
Một hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5
B. 3
C. 4
D. 6
Họ nguyên hàm của hàm số f(x) = x-sin2x là
A.
B.
C.
D.
Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để
A.
B.
C.
D.
Giả sử hàm số f(x) liên tục trên đoạn [0;2] thỏa mãn Tính tích phân
A. 3
B. -3
C. 6
D. -3
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.
A. C(3;0)
B. C(1;0)
D. (5;0)
D. (6;0)
Giá trị lớn nhất của hàm số trên đoạn bằng:
A. 24
B. 20
C. 12
D.
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, AB=4a, AC=5a. Tính thể tích khối trụ:
A.
B.
C.
D.
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề sai?
A. Hàm số đã cho nghịch biến trên từng khoảng xác định.
B. Đồ thị hàm số đã cho không có tiệm cận ngang.
C. Đồ thị hàm số đã cho có một tiệm cận đứng là trục tung.
D. Hàm số đã cho có tập xác định là
Cho x là số thực dương, khai triển nhị thức ta có hệ số của số hạng chứa xm bằng 792: Giá trị của m là:
A. m=3 và m=9
B. m=0 và m=9
C. m=9
D. m=0
Tìm tập nghiệm S của phương trình 2x+1=4
A.
B.
C.
D.
Cho tứ diện ABCD có Giá trị của O để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
A.
B.
C.
D.
Cho khối chóp SABCD có đáy là hình vuông cạnh vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc . Tính thể tích V của khối chóp SABCD.
A.
B.
C.
D.
Cho tích phân . Đẳng thức nào sau đây là đúng?
A.
B.
C.
D.
Cho hàm số y = f(x) có đạo hàm cấp 2 trên khoảng K và Mệnh đề nào sau đây đúng?
A. Nếu f”(x0)=0 thì x0 là điểm cực trị của hàm số y = f(x)
B. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f”(x0)≠0
C. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f’(x0)=0
D. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f”(x0)>0
Tìm nguyên hàm của hàm số
A.
B.
C.
D.
Tính tích tất cả các nghiệm của phương trình
A. 1
B.
C.
D. 1
Ký hiệu (H) là hình phẳng giới hạn bởi các đường . Tích thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành
A.
B.
C.
D.
Trong không gian với hệ trục tọa độ Oxyz cho và . Khẳng định nào sau đây đúng?
A. Vecto không vuông góc với
B. Vecto cùng phương với
C.
D.
Cho hình chóp S.ABCD có các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi . Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Có bao nhiêu giá trị nguyên của tham số m để hàm số sau đạt cực tiểu tại
A. Vô số
B. 3
C. 2
D. 4
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để phương trình có nghiệm thực?
A. 25
B. 2019
C. 2018
D. 2012
Tìm tất cả các giá trị của tham số m để phương trình sau có đúng bốn nghiệm phân biệt
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho và mặt phẳng Tìm trên (P) điểm M sao cho nhỏ nhất
A.
B.
C.
D.
Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình có tập nghiệm là R.
A. Vô số
B. 2
C. 5
D. 0
Gọi M là giá trị lớn nhất của hàm số .Tính tích các nghiệm của phương trình f(x)=M
A. -6
B. 3
C. -3
D. 6
Gọi F(x) là một nguyên hàm của hàm số thỏa mãn F(0)=5. Khi đó phương trình F(x)=5 có số nghiệm thực là:
A. 0
B. 1
C. 2
D. 3
Biết phương trình z2+mz+n=0 (với m, n là các tham số thực) có một nghiệm là z=1+i. Tính môđun của số phức z=m+ni
A.
B. 4
C. 16
D. 8
Cho hàm số . Gọi S là tập hợp tất cả các giá trị của tham số m để . Tổng tất cả các phần tử của S là:
A. -11
B. 9
C. -5
D. -1
Một giải thi đấu bóng đá quốc gia có 12 đội bóng thi đấu vòng tròn hai lượt tính điểm (2 đội bất kì thi đấu với nhau đúng 2 trận). Sau mỗi trận đấu, đội thắng 3 điểm, đội thua 0 điểm, nếu hòa mỗi đội được 1 điểm. Sau giải đấu ban tổ chức thống kê được 60 trận hòa. Hỏi tổng số điểm của tất cả các đội sau giải đấu là
A. 336.
B. 630.
C. 360.
D. 306.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
A.
B.
C.
D.
Bất phương trình đúng với mọi khi và chỉ khi
A.
B.
C.
D.
Cho tứ diện ABCD có có tam giác vuông tại B. Biết . Quay tam giác ABC và AB (bao gồm cả điểm bên trong 2 tam giác) xung quanh đường thẳng AB ta được hai khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng:
A.
B.
C.
D.
Cho hàm số y=f(x)xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x
A. Không có giá trị.
B. x=0
C. x=1
D. x=2
Cho hàm số y = f(x) thỏa mãn và f(0)=f’(0)=2. Tính giá trị của T=f2(2)
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D cạnh bên SA vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SAB) và (SBC) là 60o. Độ dài cạnh SA là:
A.
B.
C.
D.
Cho các hàm số biết:
Số nghiệm của phương trình là
A. 6058.
B. 6057.
C. 6059.
D. 6063.
Trong không gian với hệ tọa độ Oxyz cho hai điểm , mặt phẳng (P) có phương trình . Mặt phẳng (Q) đi qua hai điểm A,B và tạo với mặt phẳng (P) một góc nhỏ nhất. (Q) có một vecto pháp tuyến là , khi đó a+b bằng
A. 4
B. 0
C. 1
D. -2