Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 7)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Trong không gian Oxyz, cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A.
B.
C.
D.
Với a là số thực dương tùy ý, giá trị log4a8 bằng:
A.
B.
C.
D.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) là:
A.
B.
C.
D.
Một quả bóng tiêu chuẩn được bơm hơi với áp suất trong khoảng 8,5 – 15,6 Psi (Psi: đơn vị đo áp suất thường dùng ở Mỹ). Lúc đầu quả bóng được bơm hơi 90% áp suất tối đa (15,6 Psi) sau mỗi ngày áp suất hơi trong quả bóng giảm đi 1,5% so với ngày trước đó. Hỏi sau tối đa bao nhiêu ngày phải bơm lại bóng để đạt tiêu chuẩn quy định?
A. 36 ngày.
B. 33 ngày.
C. 35 ngày.
D. 34 ngày.
Cho cấp số cộng (un) có số hạng đầu u1 = -3 và u6 = 27. Khi đó công sai d bằng:
A. 7
B. 5
C. 8
D. 6
Cho hàm số y = ax3+bx2+cx+d có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.
Trong không gian Oxyz, cho 3 điểm A(2;1;-1), B(-1;0;4), C(0;-2;-1). Phương trình mặt phẳng đi qua điểm A và vuông góc với đường thẳng BC là:
A.
B.
C.
D.
Cho khối nón có bán kính đáy r=4, chiều cao như hình vẽ. Thể tích của khối nón là:
A.
B.
C.
D.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Có bao nhiêu cách chọn 3 học sinh để tham gia vệ sinh công cộng?
A. 9880.
B. 59280.
C. 2300.
D. 455.
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên trục Oz là:
A.
B.
C.
D.
Tính tích phân
A.
B.
C.
D.
Cho khối lăng trụ ABC.A’B’C’, mặt bên (ABB’A’) có diện tích bằng 10. Khoảng cách đỉnh C đến mặt phẳng (ABB’A’) bằng 6. Thể tích khối lăng trụ đã cho bằng:
A. 40
B. 60
C. 30
D. 20
Cho z = iz+2020. Số phức liên hợp của số phức z là:
A.
B.
C.
D.
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.
Hàm số đạt cực tiểu tại điểm
A. x=0
B. x=1
C. x=-1
D. x=-1 và x=3
Doraemon có hẹn với các bạn tham dự trận bóng đá, nhưng do ngủ quên nên khi tỉnh dậy thì sắp đến giờ trận đấu bắt đầu. Doraemon dùng chiếc chổi bay với vận tốc , biết nhà Doraemon cách sân bóng 1600 m. Hỏi sau bao lâu Doraemon đến được sân bóng?
A. 5 giây.
B. 8 giây.
C. 10 giây.
D. 12 giây.
Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như hình vẽ.
Hỏi phương trình 2f(x)+7 = 0 có bao nhiêu nghiệm?
A. 4
B. 1
C. 2
D. 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và . Biết và SA=a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng:
A. 30o
B. 45o
C. 60o
D. 90o
Gọi z1, z2 là hai nghiệm phức phương trình . Giá trị bằng:
A.
B.
C.
D.
Sau khi phát hiện dịch bệnh viêm đường hô hấp cấp do vi rút 2019-nCoV gây ra, nhóm các chuyên gia y tế đã nghiên cứu độc lập tại một địa phương của thành phố Vũ Hán trong 1 tháng. Theo thống kê, số người nhiễm bệnh được biểu thị là đồ thị hàm số f(x). Tốc độ truyền bệnh (người/ngày) được biểu thị bởi đồ thị hàm số f’(x).
Tại thời điểm tốc độ truyền bệnh lớn nhất thì số người mắc bệnh là:
A. 154
B. 6
C. 14
D. 200
Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên R. Giá trị M+m bằng:
A.
B.
C.
D.
Trong không gian Oxyz, cho mặt cầu và mặt phẳng . Có bao nhiêu giá trị nguyên của tham số m để (α) cắt (S) theo giao tuyến là một đường tròn?
A. 14
B. 15
C. 1
D. Vô số
Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng . Thể tích của khối lăng trụ là:
A.
B.
C.
D.
Cho hàm số y=f(x) liên tục trên R, có đạo hàm . Số điểm cực trị của hàm số y=f(x) là:
A. 3
B. 2
C. 4
D. 1
Cho a là số thực dương khác 1. Biểu thức bằng:
A.
B.
C.
D.
Trên mặt phẳng tọa độ Oxy, hai điểm A, B lần lượt biểu diễn hai số phức z1 và z2. Điểm biểu diễn số phức là điểm nào sau đây?
A. Điểm M.
B. Điểm N.
C. Điểm P.
D. Điểm Q.
Phương trình có nghiệm là:
A.
B.
C.
D.
Một khối pha lê gồm một hình cầu (H1), bán kính R và một hình nón cụt (H2) có bán kính đáy lớn, đáy nhỏ và chiều cao lần lượt là xếp chồng lên nhau như hình vẽ. Biết thể tích khối cầu (H1) và khối nón cụt (H2) lần lượt là V1 và V2. Tỉ số bằng:
A.
B.
C.
D.
Cho hàm số y=f(x) liên tục trên R\{1} và có bảng biến thiên như sau:
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
A. 2
B. 4
C. 6
D. 8
Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu như hình vẽ bên). Diện tích phần không tô màu của viên gạch bằng:
A.
B.
C.
D.
Trong không gian, cho hai điểm A, B cố định có độ dài AB bằng 6. Tập hợp các điểm M trong không gian sao cho là một mặt cầu có bán kính bằng:
A.
B.
C.
D. 6
Biết rằng hàm số F(x) là một nguyên hàm của hàm số và thỏa mãn . Giá trị của [F(e)]2 bằng:
A.
B.
C.
D.
Cho hàm số f(x). Biết f(0)=2 và , khi đó bằng:
A.
B.
C.
D.
Trong không gian Oxyz, cho hai đường thẳng . Đường thẳng vuông góc và cắt đồng thời hai đường thẳng d1 và d2 có phương trình là:
A.
B.
C.
D.
Cho số phức z thỏa mãn điều kiện :. Giá trị nhỏ nhất của biểu thức bằng:
A.
B.
C.
D.
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Đặt IA=x, IB=y, IC=z, biết rằng . Giá trị của a bằng:
A. 2
B. 1
C. 3
D. 5
Cho hàm số f(x), hàm số y = f’(x) liên tục trên R và có đồ thị như hình vẽ. Bất phương trình f(x)>2x+m (m là tham số thực) nghiệm đúng với mọi khi và chỉ khi:
A.
B.
C.
D.
Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp X={1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để chọn ra được một số có các chữ số 1, 2, 8, 9 trong đó các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau bằng:
A.
B.
C.
D.
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng (P) song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng , ta được thiết diện là một hình vuông. Thể tích khối trụ bằng:
A.
B.
C.
D.
Giả sử m là số thực sao cho phương trình có hai nghiệm x1, x2 thỏa mãn x1.x2=9. Khi đó m thuộc khoảng nào dưới đây?
A.
B.
C.
D.
Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng 30o. Biết AB=5, AC=7, BC=8 tính khoảng cách d từ A đến mặt phẳng (SBC).
A.
B.
C.
D.
Cho các hàm số f(x), g(x) liên tục trên đoạn [0;1] thỏa mãn với m, n là các số thực khác 0 và . Giá trị của là:
A.
B.
C.
D.
Trong không gian Oxyz, cho A(1;-1;2), B(-2;0;3), C(0;1;-2). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức đạt giá trị nhỏ nhất. Khi đó T=12a+12b+c có giá trị là:
A. T=3
B. T=-3
C. T=1
D. T=-1
Cho hàm số y = f(x) = ax2+bx+c có đồ thị như hình vẽ. Kí hiệu [X] là phần nguyên của X. Số nghiệm của phương trình trên [1;2] là:
A.
B.
C.
D.
Cho z là số phức thay đổi thỏa mãn số phức là số thuần ảo. Tập hợp các điểm biểu diễn cho số phức z là:
A. đường elip bỏ đi một điểm.
B. đường thẳng song song với trục tung.
C. đường tròn bỏ đi một điểm.
D. đường thẳng bỏ đi một điểm.
Cho hai hàm số y = f(x), y = g(x) có đồ thị hàm số y = f’(x), y = g’(x) như hình vẽ sau:
Xét hàm số h(x) = f(x)-g(x) trên [-5;5], biết rằng S2<S1=S3. Khi đó giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = h(x) trên đoạn [-5;5] lần lượt bằng:
A. h(-5) và h(5)
B. h(-5) và h(-2)
C. h(2) và h(5)
D. h(2) và h(-2)
Cho hàm số y = f(x) có đạo hàm liên tục trên R và hàm số y = f’(x) có đồ thị như hình vẽ bên. Hàm số y = f(|2x-1|) có bao nhiêu điểm cực trị?
A. 1
B. 3
C. 5
D. 7
Cho tứ diện ABCD và các điểm M, N, P thuộc các cạnh BC, BD, AC sao cho BC=4BM, AC=3AP, BD=2BN. Tỉ số thể tích hai phần của khối tứ diện ABCD được phân chia bởi mặt phẳng (MNP) bằng:
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và điểm M nằm ngoài mặt cầu (S) sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) và . Khi đó, thể tích khối chóp M.ABC bằng:
A.
B.
C.
D.
Đồ thị hàm số f(x) = ax3+bx2+cx+d có dạng như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình f(f(x)+1)=m có số nghiệm là lớn nhất?
A. 5
B. 2
C. 4
D. 3
Biết m là một số thực để bất phương trình , thỏa mãn với mọi . Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.