Giải SBT Toán 11 (Kết nối tri thức) Bài 30: Công thức nhân xác suất cho hai biến cố độc lập
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Cho P(A) = 0,4; P(B) = 0,5; P(A B) = 0,6. Hỏi A và B có độc lập hay không?
Cho P(A) = ; P(B) = ; P(AB) = . Hỏi A và B có độc lập hay không?
Gieo hai đồng xu cân đối. Xét các biến cố A: “Cả hai đồng xu đều ra mặt sấp”, B: “Có ít nhất một đồng xu ra mặt sấp”. Hỏi A và B có độc lập hay không?
Gieo hai con xúc xắc cân đối. Xét các biến cố A: “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”, B: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”. Chứng tỏ rằng A và B không độc lập.
Có 3 hộp I, II, III. Mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
A: “Tổng các số ghi trên ba tấm thẻ là 6”; B: “Ba tấm thẻ có ghi số bằng nhau”.
a) Tính P(A), P(B).
b) Hỏi A, B có độc lập không?
Hai bạn An và Bình không quen biết nhau và đều học xa nhà. Xác suất để bạn An về thăm nhà vào ngày Chủ nhật là 0,2 và của bạn Bình là 0,25. Dùng sơ đồ hình cây để tính xác suất vào ngày Chủ nhật:
a) Cả hai bạn đều về thăm nhà.
b) Có ít nhất một bạn về thăm nhà.
c) Cả hai bạn đều không về thăm nhà.
d) Chỉ có bạn An về thăm nhà.
e) Có đúng một bạn về thăm nhà.
Cho A, B là hai biến cố độc lập và P(AB) = 0,1; P() = 0,4. Tìm P(A).