Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:
Tự luận

Trong không gian cho hai đường thẳng cắt nhau a và b. Nếu c là một đường thẳng song song với a thì

A. c và b song song  

B. c và b cắt nhau   

C. c và b chéo nhau  

D. c và b không song song với nhau

Câu 2:
Tự luận

Cho tứ diện ABCD. Một mặt phẳng cắt các cạnh AB, BC, CD, DA của tứ diện lần lượt tại M, N, P, Q. Khi đó

A. MN, AC, PQ đồng quy.     

B. MN, AC, PQ đôi một song song.          

C. MN, AC, PQ đôi một chéo nhau.

D. MN, AC, PQ đôi một song song hoặc chéo nhau.

Câu 3:
Tự luận

Nếu mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) lần lượt theo hai giao tuyến a và b thì vị trí tương đối giữa hai đường thẳng a và b là:

A. song song                                    

B. chéo nhau       

C. trùng nhau                                   

D. cắt nhau

Câu 4:
Tự luận

Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau. Đường thẳng d cắt các mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Đường thẳng d’ cắt các mặt phẳng (P), (Q), (R) lần lượt tại A’, B’, C’. Biết rằng ABAC=23, tỉ số ABAC bằng

A. 13          

B. 23          

C. 32          

D. 12.

Câu 5:
Tự luận

Chọn hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó, d đi qua S và song song với

A. AC        

B. CD                  

C. BD        

D. BC

Câu 6:
Tự luận

Cho tứ diện ABCD có E, F lần lượt là trung điểm của các cạnh BC, CD. Mặt phẳng (P) chứa đường thẳng EF và cắt mặt phẳng (ABD) theo giao tuyến d. Khi đó

A. d song song với BC           

B. d song song với AB           

C. d song song với BD           

D. d song song với CD

Câu 7:
Tự luận

Cho hình hộp chữ nhật ABCD.A’B’C’D’. Hình chiếu song song của điểm A trên mặt phẳng (CDD’C’) theo phương BC’ là:

A. D’                   

B. D                     

C. B                     

D. C’

Câu 8:
Tự luận

Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d. Khi đó

A. d là tập hợp tất cả các điểm nằm trong mặt phẳng (P) và nằm ngoài mặt phẳng Q           

B. d là tập hợp tất cả các điểm nằm ngoài mặt phẳng (P) và nằm trong mặt phẳng Q           

C. d là tập hợp tất cả các điểm nằm ngoài cả hai mặt phẳng (P) và (Q)    

D. d là tập hợp tất cả các điểm nằm trong cả hai mặt phẳng (P) và (Q)

Câu 9:
Tự luận

Cho mặt phẳng (P) và điểm A nằm ngoài mặt phẳng (P). Khẳng định nào sau đây là đúng?

A. Qua A có vô số mặt phẳng song song với (P)                   

B. Qua A có đúng một mặt phẳng song song với (P)                       

C. Qua A không có mặt phẳng song song với (P)                            

D. Qua A có đúng hai mặt phẳng song song với (P)

Câu 10:
Tự luận

Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE.

a) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBE).

b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SDE).

c) Giả sử giao tuyến của hai mặt phẳng (SAE) và (SBC) song song với đường thẳng AE. Chứng minh AE//BC

Câu 11:
Tự luận

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AA’, AB, AC

a) Chứng minh rằng BC//(MNP).

b) Xác định giao tuyến d của hai mặt phẳng (MNP) và (A’B’C’)

c) Chứng minh rằng d//NP

Câu 12:
Tự luận

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC lần lượt tại E, F.

a) Xác định giao tuyến của hai mặt phẳng (EAB) và (FCD).

b) Chứng minh rằng tứ giác AEFD là hình thang.

c) Xác định giao tuyến của hai mặt phẳng (ECD) và (FAB).

d) Chứng minh rằng giao tuyến của hai mặt phẳng (ECD) và (FAB) song song với giao tuyến của hai mặt phẳng (EAB) và (FCD).

Câu 13:
Tự luận

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi O là một điểm nằm trong tam giác SAD.

a) Xác định giao điểm của đường thẳng AO và mặt phẳng (SCD).

b) Xác định giao tuyến của hai mặt phẳng (SBO) và (SAC).

c) Xác định giao điểm của đường thẳng BO và mặt phẳng (SAC).

Câu 14:
Tự luận

Cho hình lăng trụ tứ giác ABCD.A’B’C’D’. Gọi M, N, M’, N’ lần lượt là trung điểm của các cạnh AB, CD, A’B’, C’D’.

a) Chứng minh rằng bốn điểm M, N, M’, N’ đồng phẳng và tứ giác MNN’M’ là hình bình hành

b) Giả sử MN không song song với BC. Xác định giao tuyến của hai mặt phẳng (MNN’M’) và (BCC’B’).

Câu 15:
Tự luận

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng và MNPQ là hình bình hành.

Câu 16:
Tự luận

Một người thợ đang cố gắng đặt tấm kính ABCD (mép AB không song song với CD) dựa vào tường sao cho mép kính CD song song với đường chân tường, còn mép AB nằm hoàn toàn trên tường. Sau một hồi loay hoay, người thợ vẫn không thể đặt được tấm kính như mong muốn. Hãy giải thích tại sao.

Có cách nào để đặt tấm kính để một mép kính song song với đường chân tường, một mép kính khác nằm hoàn toàn trên tường không?

Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 4 trang 72 (ảnh 11)