Giải Toán 12 (Kết nối tri thức) Bài 9: Khoảng biến thiên và khoảng tứ phân vị
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Trong tình huống mở đầu, gọi là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 (mẫu số liệu gốc).
a) Có thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc hay không?
b) Giá trị lớn nhất, giá trị nhỏ nhất có thể nhận là gì?
c) Hãy đưa ra một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc.
Chỉ ra rằng khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.
Nhóm | ... | ... | |||
Tần số | m1 | ... | mi | ... | mk |
Bảng 3.1
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:
Thời gian (phút) | [25;30) | [30;35) | [35;40) | [40;45) |
Số học sinh | 8 | 16 | 4 | 2 |
a) Tính khoảng biến thiên R cho mẫu số liệu ghép nhóm trên.
b) Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?
Trong tình huống mở đầu, gọi là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 (mẫu số liệu gốc).
a) Có thể tính chính xác khoảng tứ phân vị của mẫu số liệu gốc hay không?
b) Tìm tứ phân vị thứ nhất và thứ phân vị thứ ba cho mẫu số liệu ghép nhóm.
c) Hãy đưa ra một giá trị xấp xỉ cho khoảng tứ phân vị của mẫu số liệu gốc.
Một người ghi lại thời gian đàm thoại của một số cuộc gọi cho kết quả như bảng sau:
Thời gian t (phút) | Số cuộc gọi |
8 | |
17 | |
25 | |
20 | |
10 |
Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Hãy giải bài toán trong tình huống mở đầu bằng cách sử dụng khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm.
Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021-2022 cho kết quả như sau:
a) Hãy ghép nhóm dãy số liệu trên thành các nhóm có độ dài bằng nhau với nhóm đầu tiên là .
b) Tính khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu gốc và mẫu số liệu ghép nhóm thu được ở câu a. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?
Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:
Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B.
a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B.
b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?