Giải Toán 7 (Kết nối tri thức) Bài 28: Phép chia đa thức một biến

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:
Tự luận

Bài toán: Tìm đa thức P sao cho A = B . P, trong đó

A = 2x4 - 3x3 - 3x2 + 6x - 2 và B = x2 - 2

Câu 2:
Tự luận

Tìm thương của mỗi phép chia hết sau:

a) 12x3 : 4x; b) (-2x4) : x4; c) 2x5 : 5x2

Câu 3:
Tự luận

Giả sử x ≠ 0. Hãy cho biết:

a) Với điều kiện nào (của hai số mũ) thì thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương?

b) Thương hai lũy thừa của x cùng bậc bằng bao nhiêu

Câu 4:
Tự luận

Thực hiện các phép chia sau:

a) 3x7 : 12x4; b) (-2x) : x; c) 0,25x5 : (-5x2)

Câu 5:
Tự luận

Kiểm tra lại rằng ta có phép chia hết A : B = 2x2 - 5x + 1, nghĩa là xảy ra:

A = B . (2x2 - 5x + 1)

Câu 6:
Tự luận

Thực hiện phép chia:

a) (-x6 + 5x4 - 2x3) : 0,5x2.

b) (9x2 - 4) : (3x + 2)

Câu 7:
Tự luận

Em hãy giải bài toán trong tình huống mở đầu

Câu 8:
Tự luận

Bốn bước đầu tiên khi chia đa thức D = 5x3 - 3x2 - x + 7 cho đa thức E = x2 + 1 được viết gọn như sau

Câu 9:
Tự luận

Bốn bước đầu tiên khi chia đa thức D = 5x3 - 3x2 - x + 7 cho đa thức E = x2 + 1 được viết gọn như sau

Câu 10:
Tự luận

Bốn bước đầu tiên khi chia đa thức D = 5x3 - 3x2 - x + 7 cho đa thức E = x2 + 1 được viết gọn như sau

Câu 11:
Tự luận

Tìm dư R và thương Q trong phép chia đa thức A = 3x4 - 6x - 5 cho đa thức

B = x+ 3x - 1 rồi viết A dưới dạng A = B . Q + R

Câu 12:
Tự luận

 Tròn: “Đố Vuông tìm được dư trong phép chia x3 - 3x2 + x - 1 cho x2 - 3x”.

Vuông: “Mình chỉ nhìn qua cũng biết được dư là x - 1”.

Em có biết tại sao Vuông làm nhanh thế không 

Câu 13:
Tự luận

Tính:

a) 8x5 : 4x3; b) 120x7 : (-24x5);

c) 34(-x)3 : 18x d) -3,72x4 : (-4x2)

Câu 14:
Tự luận

Thực hiện các phép chia đa thức sau:

a) (-5x3 + 15x2 + 18x) : (-5x);

b) (-2x5 - 4x3 + 3x2) : 2x2

Câu 15:
Tự luận

Thực hiện các phép chia đa thức sau bằng cách đặt tính chia:

a) (6x3 - 2x2 - 9x + 3) : (3x - 1);

b) (4x4 + 14x3 - 21x - 9) : (2x2 - 3)

 

Câu 16:
Tự luận

Thực hiện phép chia 0,5x5 + 3,2x3 - 2x2 cho 0,25xn trong mỗi trường hợp sau:

a) n = 2;

b) n = 3

Câu 17:
Tự luận

Trong mỗi trường hợp sau đây, tìm thương Q(x) và dư R(x) trong phép chia F(x) cho G(x) rồi biểu diễn F(x) dưới dạng:

F(x) = G(x) . Q(x) + R(x).

a) F(x) = 6x4 - 3x3 + 15x2 + 2x - 1; G(x) = 3x2.

b) F(x) = 12x4 + 10x3 - x - 3; G(x) = 3x2 + x + 1

Câu 18:
Tự luận

Bạn Tâm lúng túng khi muốn tìm thương và dư trong phép chia đa thức 21x - 4 cho 3x2.

Em có thể giúp bạn Tâm được không