Phương trình đường thẳng

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Phương trình tham số của đường thẳng đi qua điểm M(x0;y0;z0)M\left( {{x_0};{y_0};{z_0}} \right) và có VTCP u=(a;b;c)  \overrightarrow u = \left( {a;b;c} \right)\;là:

A.d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)

B. d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)

C. d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)

D. d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)

Câu 2:

Đường thẳng xx0a=yy0b=zz0c\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c} có một VTCP là:

A.(a;b;c)\left( {a;b;c} \right)

B. (a;b;c)\left( {a;b;c} \right)

C. (x0;y0;z0)\left( {{x_0};{y_0};{z_0}} \right)

D. (x0;y0;z0)\left( { - {x_0}; - {y_0}; - {z_0}} \right)

Câu 3:

Đường thẳng đi qua điểm (x0;y0;z0)\left( { - {x_0}; - {y_0}; - {z_0}} \right) và có VTCP (−a;−b;−c) có phương trình:

A.xx0a=yy0b=zz0c\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}

B. xx0a=yy0b=zz0c\frac{{x - {x_0}}}{{ - a}} = \frac{{y - {y_0}}}{{ - b}} = \frac{{z - {z_0}}}{{ - c}}

C. x+x0a=y+y0b=z+z0c\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}

D. x+x0a=y+y0b=z+z0c\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{{ - b}} = \frac{{z + {z_0}}}{c}

Câu 4:

Cho đường thẳng d:\left\{ {\begin{array}{*{20}{c}}{x = - t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\left( {t \in \mathbb{R}} \right). Điểm nào trong các điểm dưới đây thuộc đường thẳng d?

A.(−1;−1;1)     

B.(−1;1;1)        

C.(0;1;1)

D.(0;1;0)

Câu 5:

Điểm nào sau đây nằm trên đường thẳng x+12=y22=z1\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}?

A.(0;1;2)           

B.(1;0;1)

C.(2;−2;1)        

D.(3;−4;1) 

Câu 6:

Cho đường thẳng d:x12=y11=z+12d:\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2} và các điểm A(1;1;−1),B(−1;−1;1),C(2;12;0)C\left( {2;\frac{1}{2};0} \right). Chọn mệnh đề đúng:

A.A và B đều thuộc d  

B.B và C đều thuộc d

C.A và C đều thuộc d

D.chỉ có A thuộc d  

Câu 7:

Trong không gian Oxyz, cho đường thẳng (d) đi qua  M0(x0,y0,z0)    {M_0}\left( {{x_0},{y_0},{z_0}} \right)\;\;và nhận u=(a,b,c),    a2+b2+c2>0  \overrightarrow u = \left( {a,b,c} \right),\;\;{a^2} + {b^2} + {c^2} > 0\;làm một vecto chỉ phương. Hãy chọn khẳng định sai trong bốn khẳng định sau?

A.Phương trình chính tắc của (d):xx0a=yy0b=zz0c(d):\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}

B.Phương trình tham số của d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)

C.Nếu k0  k \ne 0\; thì v=k.u\vec v = k.\vec ulà một vecto chỉ phương của đường thẳng (d).

D.Phương trình chính tắc của(d):x+x0a=y+y0b=z+z0c(d):\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}

Câu 8:

Trong không gian Oxyz, tìm phương trình tham số trục Oz?

A.\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = 0}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{z = t}\end{array}} \right.

Câu 9:

Trong không gian Oxyz, điểm nào sau đây thuộc trục Oy?

A.M(0,0,3)

B.N(0,1,0)

C.P(−2,0,0)

D.Q(1,0,1)  

Câu 10:

Trong không gian với hệ tọa độ Oxyz,  phương trình tham số của đường thẳng Δ:x41=y+32=z21{\rm{\Delta }}:\frac{{x - 4}}{1} = \frac{{y + 3}}{2} = \frac{{z - 2}}{{ - 1}} là:

A.\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 - 4t}\\{y = 2 + 3t}\\{z = - 1 - 2t}\end{array}} \right.

B. \Delta :\left\{ {\begin{array}{*{20}{c}}{x = - 4 + t}\\{y = 3 + 2t}\\{z = - 2 - t}\end{array}} \right.

C. \Delta :\left\{ {\begin{array}{*{20}{c}}{x = 4 + t}\\{y = - 3 + 2t}\\{z = 2 - t}\end{array}} \right.

D. \Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 4t}\\{y = 2 - 3t}\\{z = - 1 + 2t}\end{array}} \right.

Câu 11:

Trong không gian với hệ trục Oxyz, cho đường thẳng dd đi qua điểm M(2,0,−1) và có vecto chỉ phương a=(4,6,2).\overrightarrow a = \left( {4, - 6,2} \right).Phương trình tham số của đường thẳng d là:

A. \left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 3t}\\{z = - 1 + t}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = - 2 + 2t}\\{y = - 3t}\\{z = 1 + t}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = 4 + 2t}\\{y = - 3t}\\{z = 2 + t}\end{array}} \right.

Câu 12:

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?

A.x+12=y+23=z34\frac{{x + 1}}{2} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 3}}{4}

B. x13=y21=z+31\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}

C. x31=y+12=z13\frac{{x - 3}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}

D. x12=y23=z+34\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{4}

Câu 13:

Trong không gian Oxyz, cho tam giác OAB với A(1;1;2),B(3;−3;0). Phương trình đường trung tuyến OI của tam giác OAB là

A.x2=y1=z1\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}

B. x2=y1=z1\frac{x}{2} = \frac{y}{1} = \frac{z}{1}

C. x2=y1=z1\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{{ - 1}}

D. x2=y1=z1\frac{x}{{ - 2}} = \frac{y}{1} = \frac{z}{1}

Câu 14:

Trong không gian Oxyz, cho hình bình hành ABCD với  A(0,1,1), B(−2,3,1) và C(4,−3,1). Phương trình nào không phải là phương trình tham số của đường chéo BD.

A.\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 - t}\\{z = 1}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = 2 - t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = - 1 + 2t}\\{z = 1}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 + t}\\{z = 1}\end{array}} \right.

Câu 15:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(2,1,3) và đường thẳng d:x13=y21=z1d':\frac{{x - 1}}{3} = \frac{{y - 2}}{1} = \frac{z}{1}. Gọi d  là đường thẳng đi qua A  và song song d′. Phương trình nào sau đây không phải là phương trình đường thẳng d?

A. \left\{ {\begin{array}{*{20}{c}}{x = 2 + 3t}\\{y = 1 + t}\\{z = 3 + t}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = - 1 + 3t}\\{y = t}\\{z = 2 + t}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = 5 - 3t}\\{y = 2 - t}\\{z = 4 - t}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = - 4 + 3t}\\{y = - 1 + t}\\{z = 2 + t}\end{array}} \right.

Câu 16:

Phương trình đường thẳng d đi qua điểm A(1;2;−3) và song song với trục OzOz là:

A. \left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2}\\{z = - 3}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2}\\{z = 3 + t}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.

Câu 17:

Phương trình đường thẳng đi qua điểm A(1,2,3) và vuông góc với 2 đường thẳng cho trước: d1:x12=y1=z+11  {d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\; và d2:x23=y12=z12{d_2}:\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2} là: 

A.d:x14=y27=z31d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{{ - 1}}

B. d:x14=y27=z31d:\frac{{x - 1}}{4} = \frac{{y - 2}}{7} = \frac{{z - 3}}{1}

C. d:x14=y27=z31d:\frac{{x - 1}}{{ - 4}} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}

D. d:x14=y27=z31d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}

Câu 18:

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,0,0),B(0,3,0),C(0,0,−4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:  

A.\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = - 4t}\\{z = - 3t}\end{array}} \right.

B. \left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 2 + 4t}\\{z = - 3t}\end{array}} \right.

C. \left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = - 3t}\end{array}} \right.

D. \left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = 1 - 3t}\end{array}} \right.

Câu 19:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta :\left\{ {\begin{array}{*{20}{c}}{x = 2 + \left( {{m^2} - 2m} \right)t}\\{y = 5 - \left( {m - 4} \right)t}\\{z = 7 - 2\sqrt 2 }\end{array}} \right.

và điểm A(1;2;3). Gọi S là tập các giá trị thực của tham số m để khoảng cách từ A đến đường thẳng Δ có giá trị nhỏ nhất. Tổng các phần tử của S là

A.56\frac{5}{6}

B. 53\frac{5}{3}

C. 73\frac{7}{3}

D. 35\frac{3}{5}

Câu 20:

Trong không gian Oxyz, cho đường thẳng d:x31=y41=z52  d:\frac{{x - 3}}{1} = \frac{{y - 4}}{1} = \frac{{z - 5}}{{ - 2}}\; và các điểm A(3+m;4+m;52m),  B(4n;5n;3+2n)A(3 + m;4 + m;5 - 2m),\;B\left( {4 - n;5 - n;3 + 2n} \right) với m,n là các số thực. Khẳng định nào sau đây đúng?

A.Ad,  BdA \notin d,\,\,B \in d

B. Ad,  BdA \in d,\,\,B \in d

C. Ad,  BdA \in d,\,\,B \notin d

D. Ad,  BdA \notin d,\,\,B \notin d