Sự đồng biến, nghịch biến

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:

A.\[f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\]

B. \[f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\]

C. \[f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\]

D. \[f\left( {{x_2}} \right) \ge f\left( {{x_1}} \right)\]

Câu 2:

Cho hàm số y=f(x) nghịch biến và có đạo hàm trên (−5;5). Khi đó:

A.\[f\left( 3 \right) > 0\]

B. \[f'\left( 0 \right) \le 0\]

C. \[f'\left( 0 \right) > 0\]

D. \[f\left( 0 \right) = 0\]

Câu 3:

Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

A.(0;1) và \[\left( {2; + \infty } \right)\]

B.(1;2)

C.\[\left( {2; + \infty } \right)\]

D.(0;1)

Câu 4:

Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:

A.Hàm số đồng biến trên các khoảng \[\left( { - \infty ; - 2} \right)\;\]và \[\left( {2; + \infty } \right)\]

B.Hàm số nghịch biến trên khoảng \[\left( { - 2; + \infty } \right)\]

C.Hàm số đồng biến trên khoảng (−2;2)

D.Hàm số không đổi trên \(\mathbb{R}\)

Câu 5:

Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:

A.Hàm số đồng biến trên R.

B.Hàm số không xác định tại x=0.

C.Hàm số nghịch biến trên R.

D.Hàm số đồng biến trên \[\left( {0; + \infty } \right)\;\]và nghịch biến trên \[\left( { - \infty ;0} \right)\]

Câu 6:

Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

A.Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\] thì f(x) đồng biến trên (a;b).

B.Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\]thì f(x) đồng biến trên (a;b).

C.Nếu \[f\prime (x) = 0,\forall x \in (a;b)\;\] thì f(x)=0 trên (a;b).

D.Nếu \[f\prime (x) \le 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b).

Câu 7:

Hàm số \[y = - {x^4} - 2{x^2} + 3\] nghịch biến trên:

A.\[\left( { - \infty ;0} \right)\]

B.\[\left( { - \infty ; - 1} \right)\] và (0;1)

C.R

D.\[\left( {0; + \infty } \right)\]

Câu 8:

Cho hàm số y=f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng:

A.Hàm số nghịch biến trên \[\left( { - \infty ;2} \right)\]

B.Hàm số nghịch biến trên (−2;0) 

C. \[f\left( x \right) \ge 0,\forall x \in R\]

D.Hàm số đồng biến trên (0;3)

Câu 9:

Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?

A.Trên khoảng (−1;1) thì f(x) đồng biến 

B.Trên khoảng (−3;−1) thì f(x) nghịch biến 

C.Trên khoảng (5;10) thì f(x) nghịch biến

D.Trên khoảng (−1;3) thì f(x) nghịch biến 

Câu 10:

Tìm các giá trị của tham số m sao cho hàm số \[y' = - 3{x^2} - 2x + m\] nghịch biến trên R?

A.\[m < - 3\]

B. \[m \le - \frac{1}{3}\]

C. \[m < 3\]

D. \[m \ge - \frac{1}{3}\]

Câu 11:

Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).

A.\[m < - \frac{1}{3}\]

B.m-13

C.m>-13

D. m-13

Câu 12:

Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?

A.m=0

B.−2<m<2      

</m<2 >

C.m=−1             

D.\(\left[ {\begin{array}{*{20}{c}}{m < - 2}\\{m > 2}\end{array}} \right.\)</>

Câu 13:

Bất phương trình có tập nghiệm là \[\left[ {a;b} \right].\;\]Hỏi tổng a+b có giá trị là bao nhiêu?

A.5

B.−2

C.4

D.3

Câu 14:

Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?

Cho f(x) mà đồ thị hàm số  (ảnh 1)

A.(1;2)

B.(−1;0)

C.(0;1)

D.(−2;−1)

Câu 15:

Cho hàm số y=f(x) có đồ thị như hình bên:

Cho hàm số y=f(x) có đồ thị như hình bên:Hàm số  (ảnh 1)

Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng:

A.(1;2)

B.(2;3)

C.(−1;0)

D.(−1;1)

Câu 16:

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị  hàm số \[y = f\prime (x)\]như hình sau.

Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết  (ảnh 1)

Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?

A. \[\left( {4; + \infty } \right)\]

B.(0;4).

C. \[\left( { - \infty ; - 2} \right)\]

D.(−2;0).

Câu 17:

Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]

A.2010.

B.2012.

C.2011.

D.2009.

Câu 18:

Hàm số \[y = {x^3} - 3{{\rm{x}}^2} + 4\] đồng biến trên:

A.(0;2)

B. \[\left( { - \infty ;0} \right)\;\]và \[\left( {2; + \infty } \right)\]

C. \[\left( { - \infty ;2} \right)\]

D. \[\left( {0; + \infty } \right)\]