Tích có hướng và ứng dụng

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Tích có hướng của hai véc tơ là:

A.một véc tơ

B.một số thực

C.một véc tơ khác \[\vec 0\]

D.một số thực khác 0

Câu 2:

Cho hai véc tơ \[\overrightarrow {{u_1}} = \left( {{x_1};{y_1};{z_1}} \right)\]và \[\overrightarrow {{u_2}} = \left( {{x_2};{y_2};{z_2}} \right)\]. Kí hiệu \[\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right],\]khi đó:

A.\[\vec u = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{y_2}}\\{{y_1}}\end{array}}&{\begin{array}{*{20}{l}}{{z_2}}\\{{z_1}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{z_2}}\\{{z_1}}\end{array}}&{\begin{array}{*{20}{l}}{{x_2}}\\{{x_1}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{x_2}}\\{{x_1}}\end{array}}&{\begin{array}{*{20}{l}}{{y_2}}\\{{y_1}}\end{array}}\end{array}} \right|} \right)\]

B. \[\vec u = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}&{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}&{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}&{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}\end{array}} \right|} \right)\]

C. \[\vec u = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}&{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}&{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}&{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}\end{array}} \right|} \right)\]

D. \[\vec u = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}&{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\end{array}}&{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{{y_1}}\\{{y_2}}\end{array}}&{\begin{array}{*{20}{l}}{{z_1}}\\{{z_2}}\end{array}}\end{array}} \right|} \right)\]

Câu 3:

Tính tích có hướng của hai véc tơ \[\vec u\left( {0;1; - 1} \right),\vec v\left( {1; - 1; - 1} \right)\]

A.\[\vec 0\]

B. \[\left( { - 2; - 1; - 1} \right)\]

C. \[\left( {2;1;1} \right)\]

D. \[\left( { - 1; - 2; - 1} \right)\]

Câu 4:

Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]khi đó:

A.\[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left[ {\overrightarrow {{u_2}} ,\overrightarrow {{u_1}} } \right]\]

B. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - \left[ {\overrightarrow {{u_2}} ,\overrightarrow {{u_1}} } \right]\]

C. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] - \left[ {\overrightarrow {{u_2}} ,\overrightarrow {{u_1}} } \right] = \vec 0\]

D. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] + \left[ {\overrightarrow {{u_2}} ,\overrightarrow {{u_1}} } \right] = 0\]

Câu 5:

Điều kiện để hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \] cùng phương là:

A.\[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0\]

B. \[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = \vec 0\]

C. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \vec 0\]

D. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\]

Câu 6:

Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]khác \(\overrightarrow 0 \)cùng phương. Điều kiện nào sau đây “không” đúng?

A.\[\overrightarrow {{u_1}} = k\overrightarrow {{u_2}} \]

B. \[\overrightarrow {{u_2}} = k\overrightarrow {{u_1}} \]

C. \[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \vec 0\]

D. \[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = \vec 0\]

Câu 7:

Hai véc tơ \[\vec u = \left( {a;1;b} \right),\vec v = \left( { - 2;2;c} \right)\]cùng phương thì:

A.b=2c

B.c=2b

C.b=−2c

D.b=c

Câu 8:

Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]chọn kết luận sai:

A.\[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_1}} = 0\]

B. \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_2}} = \vec 0\]

C. \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_2}} = 0\]

D. \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] \bot \overrightarrow {{u_1}} \]

Câu 9:

Cho ba véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \]thỏa mãn \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}} = 0\]. Khi đó ba véc tơ đó:

A.đồng phẳng

B.đôi một vuông góc     

C.cùng phương

D.cùng hướng

Câu 10:

Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]kí hiệu \(\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\) là góc hợp bởi hai véc tơ. Chọn mệnh đề đúng:

A.\[\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right| = \left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\]

B. \[\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right| = \left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\]

C. \[\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\]

D. \[\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right| = \left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\]

Câu 11:

Sin của góc giữa hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]là:

A.\[\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}\]

B. \[\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}\]

C. \[\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\overrightarrow {{u_1}} .\overrightarrow {{u_2}} }}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}\]

D. \[\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}\]

Câu 12:

Trong không gian Oxyz cho hai điểm A(0;−2;3),B(1;0;−1). Tính sin góc hợp bởi hai véc tơ \(\overrightarrow {OA} ,\overrightarrow {OB} \)

A.1     

B.\[\sqrt {\frac{{19}}{{26}}} \]

C. \[\sqrt {\frac{1}{2}} \]

D. \[\sqrt {\frac{{17}}{{26}}} \]

Câu 13:

Cho A,B,C là ba đỉnh của tam giác. Công thức tính diện tích tam giác ABC là:

A.\[{S_{ABC}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\]

B. \[{S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\]

C. \[{S_{ABC}} = \frac{1}{4}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\]

D. \[{S_{ABC}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\]

Câu 14:

Diện tích tam giác OBC biết B(1;0;2),C(−2;0;0) là:

A.\(\sqrt 5 \)

B.4

C.\(2\sqrt 5 \)

D.2

Câu 15:

Công thức nào sau đây không sử dụng để tính diện tích hình bình hành ABCD?

A.\[{S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right|\]

B. \[{S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\]

C. \[{S_{ABCD}} = \left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right|\]

D. \[{S_{ABCD}} = \left| {\left[ {\overrightarrow {AC} ,\overrightarrow {BD} } \right]} \right|\]

Câu 16:

Diện tích hình bình hành ABCD có các điểm A(1;0;0),B(0;1;2),C(−1;0;0) là:

A.\(\sqrt 5 \)

B. \(2\sqrt 5 \)

C. \(2\sqrt 6 \)

D. \(2\sqrt 2 \)

Câu 17:

Thể tích khối tứ diện  được tính theo công thức:

A.\[{V_{ABCD}} = \frac{1}{3}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\]

B. \[{V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AD} } \right|\]

C. \[{V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\]

D. \[{V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AB} } \right|\]

Câu 18:

Trong không gian tọa độ Oxyz, tính thể tích khối tứ diện OBCD biết B(2;0;0),C(0;1;0),D(0;0;−3).

A.1

B.6

C.3

D.2

Câu 19:

Công thức tính thể tích khối hộp \[ABCD.A'B'C'D'\] là:

A.\[{V_{ABCD.A'B'C'D'}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} \]

B. \[{V_{ABCD.A'B'C'D'}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right|\]

C. \[{V_{ABCD.A'B'C'D'}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right|\]

D. \[{V_{ABCD.A'B'C'D'}} = \frac{1}{3}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right|\]Trả lời:

Câu 20:

Trong không gian Oxyz, cho hai điểm A(1;0;2), B(2;−1;3). Số điểm M thuộc trục Oy sao cho tam giác MAB có diện tích bằng \(\frac{{\sqrt 6 }}{4}\)là:

A.1

B.Vô số

C.0

D.2

Câu 21:

Trong không gian với hệ trục tọa độ Oxyz, véctơ nào dưới đây vuông góc với cả hai véctơ \[\overrightarrow u = \left( { - 1;0;2} \right),\overrightarrow v = \left( {4;0; - 1} \right)\]?

A.\[\vec w = \left( {1;7;1} \right).\]

B. \[\vec w = \left( { - 1;7; - 1} \right).\]

C. \[\vec w = \left( {0;7;1} \right).\]

D. \[\vec w = \left( {0; - 1;0} \right).\]

Câu 22:

Trong không gian Oxyz cho các điểm A(1;−1;0), B(−1;0;2), D(−2;1;1), A′(0;0;0). Thể tích khối hộp ABCD.A′B′C′D′ là:

A.4

B.2

C.1

D.\(\frac{1}{6}\)