Tích phân

  • 1Làm xong biết đáp án, phương pháp giải chi tiết.
  • 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
  • 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
  • 4Biết điểm yếu và có hướng giải pháp cải thiện

Câu 1:

Cho hàm số f(x) liên tục trên đoạn \[\left[ {a;b} \right].\]Chọn mệnh đề sai?

A.\[\mathop \smallint \limits_a^b f\left( x \right)dx = - \mathop \smallint \limits_b^a f\left( x \right)dx\]

B. \[\mathop \smallint \limits_a^b kdx = k\left( {b - a} \right)\]

C. \[\mathop \smallint \limits_a^b f\left( x \right)dx + \mathop \smallint \limits_b^c f\left( x \right)dx = \mathop \smallint \limits_a^c f\left( x \right)dx\]

D. \[\mathop \smallint \limits_a^b f\left( x \right)dx = \mathop \smallint \limits_b^a f\left( { - x} \right)dx\]

Câu 2:

Giả sử hàm số y=f(x) liên tục trên \[\left[ {a;b} \right]\;\]và k là một số thực trên R. Cho các công thức:

a) \[\mathop \smallint \limits_a^a f\left( x \right)dx = 0\]

b) \[\mathop \smallint \limits_a^b f\left( x \right)dx = \mathop \smallint \limits_b^a f\left( x \right)dx\]

c) \[\mathop \smallint \limits_a^b kf\left( x \right)dx = k\mathop \smallint \limits_a^b f\left( x \right)dx\]

Số công thức sai là:

A.1

B.2     

C.3     

D.0

Câu 3:

Cho hàm số f(x) có đạo hàm trên \[\left[ {1;4} \right]\;\]và \[f\left( 1 \right) = 2,f\left( 4 \right) = 10\]. Giá trị của \[I = \int\limits_1^4 {f\prime (x)dx} \] là

A.I=12

B.I=48

C.I=8

D.I=3

Câu 4:

Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {0;1} \right],\;\]có \[\mathop \smallint \limits_0^1 \left[ {3 - 2f\left( x \right)} \right]{\rm{d}}x = 5.\]. Tính \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x\].

A.\[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x = - \,1.\]

B. \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x = 1.\]

C. \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x = 2.\]

D. \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x = - \,2.\]

Câu 5:

Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?

A.\[F'\left( x \right) = x\]

B. \[F'\left( x \right) = 1\]

C. \[F\left( x \right) = x - 1\]

D. \[F'\left( x \right) = \frac{{{x^2}}}{2} - \frac{1}{2}\]

Câu 6:

Cho hàm số \[F\left( x \right) = \mathop \smallint \limits_1^x \left( {t + 1} \right)dt\]. Giá trị nhỏ nhất của F(x) trên đoạn \[\left[ { - 1;1} \right]\;\]là:

A.−1

B.2

C.\[ - \frac{{55}}{{32}}\]

D. -2

Câu 7:

Cho hai hàm số \[f\left( x \right) = {x^2}\] và \[g(x) = {x^3}\]. Chọn mệnh đề đúng:

A.\[\mathop \smallint \limits_0^1 f\left( x \right)dx \ge 0\]

B. \[\mathop \smallint \limits_0^1 g\left( x \right)dx \le 0\]

C. \[\mathop \smallint \limits_0^1 g\left( x \right)dx \ge \mathop \smallint \limits_0^1 f\left( x \right)dx\]

D. \[\mathop \smallint \limits_0^1 f\left( x \right)dx \le 0\]

Câu 8:

Giả sử  f(x) là hàm liên tục trên R và các số thực a<b

A.\[\mathop \smallint \limits_a^c f\left( x \right)d{\rm{x}} = \mathop \smallint \limits_a^b f\left( x \right)d{\rm{x}} + \mathop \smallint \limits_b^c f\left( x \right)d{\rm{x}}\]

B. \[\mathop \smallint \limits_a^b f\left( x \right)d{\rm{x}} = \mathop \smallint \limits_a^c f\left( x \right)d{\rm{x}} - \mathop \smallint \limits_b^c f\left( x \right)d{\rm{x}}\]

C. \[\mathop \smallint \limits_a^b f\left( x \right)d{\rm{x}} = \mathop \smallint \limits_b^a f\left( x \right)d{\rm{x}} + \mathop \smallint \limits_a^c f\left( x \right)d{\rm{x}}\]

D. \[\mathop \smallint \limits_a^b cf\left( x \right)d{\rm{x}} = - {\rm{c}}\mathop \smallint \limits_b^a f\left( x \right)d{\rm{x}}\]

Câu 9:

Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:

A.29   

B.5

C.19

D.40

Câu 10:

Cho \[\mathop \smallint \limits_2^5 f\left( x \right)dx = 10\], khi dó \[\mathop \smallint \limits_5^2 \left[ {2 - 4f\left( x \right)} \right]dx\] có giá trị là:

A.32

B.34

C.46

D.40

Câu 11:

Cho hàm số f(x) liên tục trên R thỏa mãn \[\mathop \smallint \limits_a^d f\left( x \right)dx = 10,\mathop \smallint \limits_b^d f\left( x \right)dx = 18,\mathop \smallint \limits_a^c f\left( x \right)dx = 7\]. Giá trị của \[\mathop \smallint \limits_b^c f\left( x \right)dx\] là:

A.−15

B.7

C.15

D.−7

Câu 12:

Cho biết \[\mathop \smallint \limits_1^3 f\left( x \right)dx = - 2,\mathop \smallint \limits_1^4 f\left( x \right)dx = 3,\mathop \smallint \limits_1^4 g\left( x \right)dx = 7\]. Chọn khẳng định sai?

A.\[\mathop \smallint \limits_1^4 \left[ {f\left( x \right) + g\left( x \right)} \right]dx = 10\]

B. \[\mathop \smallint \limits_3^4 f\left( x \right)dx = - 5\]

C. \[\mathop \smallint \limits_3^4 f\left( x \right)dx = 5\]

D. \[\mathop \smallint \limits_1^4 \left[ {4f\left( x \right) - 2g\left( x \right)} \right]dx = - 2\]

Câu 13:

Giả sử A,B là các hằng số của hàm số \[f(x) = Asin\pi x + B{x^2}\] Biết \[\mathop \smallint \limits_0^2 f\left( x \right)dx = 4\]giá trị của B là:

A.1

B.2

C.32         

D.Kết quả khác

Câu 14:

Cho số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} dx = {e^2} - 1\), khi đó a có giá trị bằng

A.1.

B.−1.

C.0.

D.2.

Câu 15:

Trong các tích phân sau, tích phân nào có giá trị khác 22?

A.\[\mathop \smallint \limits_1^{{e^2}} \ln xdx\]

B. \[\mathop \smallint \limits_0^1 2dx\]

C. \[\mathop \smallint \limits_0^\pi \sin xdx\]

D. \[\mathop \smallint \limits_0^2 xdx\]

Câu 16:

Tích phân \[I = \mathop \smallint \limits_1^2 {x^5}dx\] có giá trị là:

A.\[\frac{{19}}{3}\]

B. \[\frac{{32}}{3}\]

C. \[\frac{{16}}{3}\]

D. \[\frac{{21}}{2}\]

Câu 17:

Cho hàm số bậc ba \[f\left( x \right) = {x^3} + a{x^2} + bx + c\,\,\,\left( {a,\,\,b,\,\,c \in \mathbb{R}} \right)\] thỏa mãn: \[f\left( 1 \right) = 10,f\left( 2 \right) = 20.\]. Khi đó \(\int\limits_0^3 {f'\left( x \right)dx} \) bằng:

A.30

B.18

C.20

D.36

Câu 18:

Giá trị của b để \(\int\limits_1^b {\left( {2x - 6} \right)} dx = 0\) là:

A.b=1 hoặc b=−1                                  

B.b=0 hoặc b=1

C.b=0 hoặc b=5

D.b=1 hoặc b=5

Câu 19:

Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:

A.\[3a - b < 12\]

B. \[a + 2b = 13\]

C. \[a - b > 2\]

D. \[{a^2} + {b^2} = 41\]

Câu 20:

Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

A.30

B.31

C.5

D.10

Câu 21:

Cho hàm số f(x) liên tục trên \[\left( {0; + \infty } \right)\;\]và thỏa mãn \[2f(x) + xf\left( {\frac{1}{x}} \right) = x\;\] với mọi x>0. Tính \[\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx\].

A.\[\frac{7}{{12}}\]

B. \[\frac{7}{4}\]

C. \[\frac{9}{4}\]

D. \[\frac{3}{4}\]

Câu 22:

Tích phân \[I = \mathop \smallint \limits_2^5 \frac{{dx}}{x}\] có giá trị bằng

A.3ln3.

B.\[\frac{1}{3}\ln 3\]

C. \[\ln \frac{5}{2}\]

D. \[\ln \frac{2}{5}\]

Câu 23:

Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \[[0;\pi ]\]đạt giá trị bằng 0 ?

A.\[f(x) = \cos 3x\]

B. \[f(x) = \sin 3x\]

C. \[f(x) = \cos \left( {\frac{x}{4} + \frac{\pi }{2}} \right)\]

D. \[f(x) = \sin \left( {\frac{x}{4} + \frac{\pi }{2}} \right)\]

Câu 24:

Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng

A.\[\frac{1}{2}\ln \frac{1}{3}\]

B. \[2\ln 3\]

C. \[\frac{1}{2}\ln 3\]

D. \[2\ln \frac{1}{3}\]

Câu 25:

Nếu \[\mathop \smallint \limits_{ - 2}^0 \left( {4 - {e^{ - \frac{x}{2}}}} \right)dx = K - 2e\]thì giá trị của K là

A.12,5.

B.9.

C.11.

D.10.

Câu 26:

Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng

A.\[\frac{{2\ln 2}}{3}\]

B. \[ - \frac{{2\ln 2}}{3}\]

C. \[ - 2\ln 2\]

D. \[2\ln 2\]

Câu 27:

Tích phân \[\mathop \smallint \limits_0^3 x(x - 1)dx\] có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây ?

A.\[\mathop \smallint \limits_0^2 \left( {{x^2} + x - 3} \right)dx\]

B. \[3\mathop \smallint \limits_0^{3\pi } \sin xdx\]

C. \[\mathop \smallint \limits_0^{\ln \sqrt {10} } {e^{2x}}dx\]

D. \[\mathop \smallint \limits_0^\pi \cos (3x + \pi )dx\]

Câu 28:

Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J

A.\[I.J = 8\]

B. \[I.J = \frac{{32}}{5}\]

C. \[I - J = \frac{{128}}{7}\]

D. \[I + J = \frac{{64}}{9}\]

Câu 29:

Tích phân \[I = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{4{{\sin }^3}x}}{{1 + \cos x}}dx\] có giá trị bằng

A.4.

B.3.

C.2.

D.1.

Câu 30:

Tích phân \[I = \mathop \smallint \limits_0^{2\pi } \sqrt {1 + \sin x} dx\] có giá trị bằng

A.\[4\sqrt 2 \]

B. \[3\sqrt 2 \]

C. \(\sqrt 2 \)

D. \[ - \sqrt 2 \]

Câu 31:

Tích phân \[\mathop \smallint \limits_{ - 1}^5 \left| {{x^2} - 2x - 3} \right|dx\] có giá trị bằng:

A.0.

B.\[\frac{{64}}{3}\]

C. 7

D. 12,5

Câu 32:

Tích phân \[\mathop \smallint \limits_2^3 \frac{{{x^2} - x + 4}}{{x + 1}}dx\]bằng

A.\[\frac{1}{3} + 6\ln \frac{4}{3}\]

B. \[\frac{1}{2} + 6\ln \frac{4}{3}\]

C. \[\frac{1}{2} - \ln \frac{4}{3}\]

D. \[\frac{1}{2} + \ln \frac{4}{3}\]

Câu 33:

Giá trị của tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {{{\sin }^4}x + {{\cos }^4}x} \right)\left( {{{\sin }^6}x + {{\cos }^6}x} \right)dx\] là:

A.\[I = \frac{{32}}{{128}}\pi \]

B. \[I = \frac{{33}}{{128}}\pi \]

C. \[I = \frac{{31}}{{128}}\pi \]

D. \[I = \frac{{30}}{{128}}\pi \]

Câu 34:

Giá trị của a để đẳng thức \[\mathop \smallint \limits_1^2 \left[ {{a^2} + (4 - 4a)x + 4{x^3}} \right]dx = \mathop \smallint \limits_2^4 2xdx\] là đẳng thức đúng

A.4.

B.3.

C.5.

D.6.

Câu 35:

Biết rằng \[\mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = a + \ln b\] với a,b là các số hữu tỉ. Giá trị của 2a+3b bằng

A.3

B.5

C.6

D.4

Câu 36:

Cho hàm số f(x) có f(0)=0 và \[f\prime (x) = si{n^4}x\forall x \in \mathbb{R}\]. Tích phân \[\mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( x \right)dx\] bằng:

A.\[\frac{{{\pi ^2} - 6}}{{18}}\]

B. \[\frac{{{\pi ^2} - 3}}{{32}}\]

C. \[\frac{{3{\pi ^2} - 16}}{{64}}\]

D. \[\frac{{3{\pi ^2} - 6}}{{112}}\]

Câu 37:

Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \[a\left( t \right) = 6 - 3t\,\,\left( {m/{s^2}} \right)\] trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:

A.10(m)

B.6(m)

C.12(m)

D.8(m)

Câu 38:

Giá trị của tích phân \[\mathop \smallint \limits_0^{2017\pi } \sqrt {1 - \cos 2x} dx\] là

A.0.

B.\[ - 4043\sqrt 2 \]

C. \[2\sqrt 2 \]

D. \[4034\sqrt 2 \]

Câu 39:

Tìm hai số thực A,B sao cho \[f(x) = Asin\pi x + B\], biết rằng \[f\prime \left( 1 \right) = 2\;\] và \[\mathop \smallint \limits_0^2 f(x)dx = 4\].

A.\(\left\{ {\begin{array}{*{20}{c}}{A = - 2}\\{B = - \frac{2}{\pi }}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{A = 2}\\{B = - \frac{2}{\pi }}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{A = - 2}\\{B = \frac{2}{\pi }}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{A = - \frac{2}{\pi }}\\{B = 2}\end{array}} \right.\)

Câu 40:

Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn \[\left[ {0;1} \right].\;\]Đặt \[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\].  Biết \[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\] với mọi \[x \in \left[ {0;1} \right].\] Tích phân \[\mathop \smallint \limits_0^1 \sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}\,dx\]có giá trị lớn nhất bằng

A.4

B.\[\frac{5}{3}\]

C. 5

D. \[\frac{4}{3}\]