Tổng hợp đề thi thptqg môn Toán cực hay mới nhất (Đề số 04)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Biết rằng đường thẳng là tiếp tuyến của mặt cầu tâm . Bán kính của mặt cầu đó là
A.
B.
C.
D.
Cho hai đường thẳng a, b song song với nhau. Trên a ta chọn 10 điểm phân biệt, trên b ta chọn 11 điểm phân biệt. Có bao nhiêu hình thang được tạo thành từ 21 điểm đã cho ở trên?
A. 406
B. 2475
C. 2512
D. 304
Gọi D là miền phẳng giới hạn bởi đồ thị các hàm số , và . Tính thể tích của khối tròn xoay khi quay D quanh trục hoành.
A.
B.
C.
D.
Cho hàm số . Gọi lần lượt là khoảng cách từ hai điểm cực đại và cực tiểu của đồ thị hàm số đến trục hoành. Khi đó tỷ số bằng
A. 5
B.
C.
D.
Xác định m để đường thẳng cắt mặt phẳng
A.
B.
C.
D. Với mọi giá trị của m
Cho hàm số . Gọi là một nguyên hàm của hàm số . Chọn phương án đúng.
A.
B.
C.
D.
Đồ thị hàm số có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 1
D. 4
Cho hàm số . Tìm giá trị thực của tham số m để nguyên hàm của thỏa mãn và
A. m = 2
B. m = 1
C. m = 0
D. m =
Tập xác định của hàm số là
A.
B. và
C.
D.
Cho tập X là một tập hợp gồm n phần tử, n là số tự nhiên lớn hơn 2. Tìm n biết số tập con gồm 2 phần tử của tập hợp X bằng 45
A. 10
B. 30
C. 6
D. 20
Cho hình vuông ABCD có cạnh a, M là trung điểm của AD. Xét khối tròn xoay sinh bởi tam giác CDM (cùng các điểm trong của nó) khi quay quanh đường thẳng AB. Thể tích của khối tròn xoay đó bằng
A.
B.
C.
D.
Cho hàm số . Chọn khẳng định đúng
A. Hàm số có duy nhất một cực trị
B. Hàm số nghịch biến trên từng khoảng thuộc tập xác định
C. Đồ thị hàm số có đường tiện cận ngang là
D. Hàm số nghịch biến trên R
Nghiệm âm lớn nhất của phương trình là
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và . Viết phương trình chính tắc của đường thẳng giao tuyến Δ của hai mặt phẳng (P) và (Q). Chọn khẳng định sai.
A.
B.
C.
D.
Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt.
A.
B.
C.
D.
Cho hàm số có đồ thị (C) là hình vẽ dưới đây. Với giá trị nào của m thì phương trình có hai nghiệm phân biệt?
A. m = 0 hoặc m = 4
B. m = 0 hoặc m = 6
C. m = -4 hoặc m = 0
D. m = -2 hoặc m = 4
Cho hình chóp S.ABCD trong đó SA, AB, BC đôi một vuông góc với nhau và . Khoảng cách giữa hai điểm S và C nhận giá trị nào trong các giá trị sau?
A. 2
B.
C.
D.
Tìm số phức z biết rằng điểm biểu diễn của z nằm trên đường tròn tâm O bán kính bằng 1 và nằm trên đường thẳng
A.
B.
C.
D.
Cho hàm số . Trong các mệnh đề sau, mệnh đề nào là SAI khi nói về nghiệm thực của phương trình ?
A. Phương trình có nghiệm trong khoảng
B. Phương trình có duy nhất một nghiệm
C. Phương trình có đúng 5 nghiệm
D. Phương trình có nghiệm trong khoảng
Gọi là hai nghiệm của phương trình Biểu thức có giá trị là
A. 15
B. 0
C. 3
D. -3
Trong các nhận định sau, nhận định nào dưới đây là sai?
A. Hàm số y=sinx và y=cosx đều có tính chất tuần hoàn
B. Hàm số y=sinx đồng biến trên khoảng
C. Hàm số y=sinx là một hàm số lẻ
D. Hàm số y=sinx có đồ thị là một đường hình sin
Cho đồ thị hàm số đạt cực đại tại và đạt cực tiểu tại . Tính giá trị của biểu thức
A. -9
B. 0
C. -24
D. -12
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Tính .
A. 2
B. -1
C. 1
D. 0
Trong các khẳng định sau, khẳng định nào sai?
A. Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì
B. Hai hình được gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia
C. Phép dời hình biến đường tròn thành đường tròn có cùng bán kính
D. Phép dời hình là phép đồng nhất
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC là
A.
B.
C.
D.
Ông Minh mua một con lợn đất và ông ta bỏ tiền vào đó như sau: Tháng đầu tiên ông ta bỏ vào đó 6 triệu đồng. Các tháng tiếp theo cứ đầu mỗi tháng ông bỏ thêm vào 1 triệu đồng. Hỏi sau ít nhất bao nhiêu tháng ông ta đủ mua tiền mua một chiếc điện thoại Iphone X giá 30 triệu đồng?
A. 27
B. 24
C. 28
D. 25
Cho hình chóp tứ giác đều có cạnh đáy bằng a, mặt bên tạo với mặt đáy một góc Diện tích xung quanh của hình nón ngoại tiếp hình chóp là
A.
B.
C.
D.
Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích là
A. 6
B. 2
C. 8
D. 4
Cho số phức . Điểm biểu diễn số phức z nằm trong góc phần tư nào của hệ tọa độ vuông góc của mặt phẳng phức?
A. Góc phần tư thứ I
B. Góc phần tư thứ II
C. Góc phần tư thứ III
D. Góc phần tư thứ IV
Có 5 bạn học sinh An, Bình, Cường, Dũng, Huệ ngồi vào một dãy ghế hàng ngang, có 5 chỗ ngồi. Tính xác suất để bạn Cường ngồi chính giữa.
A.
B.
C.
D.
Cho . Tính
A. -1
B. -3
C. 3
D. 1
Cho Tính
A. 1
B.
C. -6
D.
Cho hình chóp vuông góc với đáy. Tam giác ABC vuông tại . Tính bán kính của mặt cầu ngoại tiếp khối chóp.
A.
B.
C.
D.
Cho cấp số cộng có công sai bằng 3. Hỏi dãy có công sai bằng bao nhiêu?
A. 4
B. 2
C. 9
D. 6
Trong mặt phẳng, cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Phép tịnh tiến theo vecto biến
A. Điểm M thành N
B. Điểm M thành B
C. Điểm M thành P
D. Điểm M thành C
Cho hàm số để liên tục trên toàn trục số thì a bằng?
A. 1
B. -2
C. 0
D. -1
Giá trị viết dưới dạng lũy thừa với số mũ hữu tỉ là
A.
B.
C.
D.
Xác định
A.
B. -1
C. 1
D.
Tính tổng
A. 5050
B. 4949
C. 10100
D. 9898
Tập nghiệm của bất phương trình có dạng . Tính
A.
B.
C. 0
D.
Trong mặt phẳng phức cho các điểm A, B, C theo thứ tự biểu diễn các số phức . Tìm số phức z biểu diễn điểm D sao cho tứ giác ABCD là hình bình hành.
A.
B.
C.
D.
Tính diện tích hình phẳng giới hạn bởi các đường , trục hoành, đường thẳng x=0 và x=1
A.
B.
C.
D.
Ông Minh gửi gói tiết kiệm tích lũy cho con tại một ngân hàng với số tiền tiết kiệm ban đầu là 200 triệu đồng với lãi suất 7%/ năm. Từ năm thứ hai trở đi, mỗi năm ông gửi thêm vào tài khoản với số tiền 20 triệu đồng. Ông không rút lãi định kỳ hàng năm. Biết rằng, lãi suất định kì hàng năm không thay đổi. Hỏi sau 10 năm, số tiền ông Minh nhận về cả gốc lẫn lãi là bao nhiêu? (làm tròn đến 3 chữ số thập phân).
A. 675,126 triệu đồng
B. 710,030 triệu đồng
C. 669,759 triệu đồng
D. 559,632 triệu đồng
Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dung tích là 20lít. Cần phải thiết kế thùng sơn đó với bán kính nắp đậy là bao nhiêu (cm) để nhà sản xuất tiết kiện được vật liệu nhất?
A.
B.
C.
D.
Trong không gian hệ tọa độ Oxyz cho mặt cầu và mặt phẳng Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và cắt mặt cầu (S) theo đường tròn có bán kính bằng một nửa bán kính mặt cầu (S).
A. và
B. và
C. và
D. và
Cho mặt cầu cắt hai mặt phẳng và theo các đường tròn giao tuyến với bán kính và . Khi đó tỉ số bằng
A.
B.
C.
D.
Cho hai đường thẳng a, b cố định, song song với nhau và khoảng cách giữa chúng bằng 4. Hai mặt phẳng (P), (Q) thay đổi vuông góc gới nhau lần lượt chứa hai đường thẳng a, b. Gọi d là giao tuyến của (P), (Q). Khẳng định nào sau đây là đúng?
A. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 4
B. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 22
C. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2
D. d thuộc một mặt nón cố định
Cho hàm số Với giá trị nào của m thì đồ thị hàm số có ba điểm cực trị đồng thời ba điểm cực trị đó tạo thành một tam giác vuông cân.
A.
B.
C.
D.
Tìm tất cả các giá trị thực của tham số m sao cho hàm số nghịch biến trên khoảng
A.
B.
C.
D.
Cho hai số phức thỏa mãn và . Tìm giá trị nhỏ nhất của
A.
B.
C. 2
D.