Tổng hợp đề thi thử thptqg môn Toán có lời giải (đề 9)
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
Cho a > 0, a ≠ 1, x, y là 2 số dương. Mệnh đề nào dưới đây là đúng?
A.
B.
C.
D.
Cho 2 số phức và . Tính môđun của số phức
A. 12
B. 10
C. 13
D. 15
Nếu tăng bán kính đáy của một hình nón lên 4 lần và giảm chiều cao của hình nón đó đi 8 lần, thì thể tích khối nón tăng hay giảm bao nhiêu lần?
A. tăng 2 lần
B. tăng 16 lần
C. giảm 16 lần
D. giảm 2 lần
Hình bát diện đều có tất cả bao nhiêu cạnh?
A. 6
B. 8
C. 12
D. 20
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm A(1;-2;3) và B(0;1;2). Đường thẳng d đi qua 2 điểm A, B có một vectơ chỉ phương là:
A.
B.
C.
D.
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A.
B.
C.
D.
Trong không gian với hệ trục tọa độ Oxyz, vectơ chỉ phương của đường thẳng là
A.
B.
C.
D.
Bảng biến thiên dưới đây là bảng biến thiên của hàm số nào trong các hàm số được liệt kê ở bốn đáp án A, B, C, D?
A.
B.
C.
D.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-2y+1=0. Nếu đường thẳng ∆ qua điểm M (1;-1) và ∆ song song với d thì ∆ có phương trình là
A. x-2y+3=0
B. x-2y-3=0
C. x-2y+5=0
D. x+2y+1=0
Cho hàm số . Trong các mệnh đề sau mệnh đề nào đúng?
A. Hàm số nghịch biến trên khoảng
B. Hàm số đồng biến trên khoảng
C. Hàm số đồng biến trên khoảng
D. Hàm số nghịch biến trên khoảng và
Tìm tất cả các giá trị của tham số m để phương trình có nghiệm
A. m ≤ 2
B. 1 < m < 2
C. m ≥ 1
D. 1 ≤ m ≤ 2
Trong mặt phẳng tọa độ Oxy, viết phương trình đường tròn tâm I (3;-2) và đi qua điểm M (-1;1) là:
A.
B.
C.
D.
Tính giới hạn
A.
B. A=0
C. A=3
D.
Cho biểu thức . Xác định k sao cho biểu thức
A. k = 2
B. k = 4
C. k = 6
D. k = 8
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b]. Diện tích của hình phẳng giới hạn bởi đồ thị các hàm số y = f(x) và y = g(x) và hai đường thẳng x = a, x = b (a < b) được tính theo công thức là
A.
B.
C.
D.
Số chỉnh hợp chập 4 của 7 phần tử là:
A. 720
B. 35
C. 840
D. 24
Cho hàm số có đồ thị như hình bên. Tất cả các giá trị của m để phương trình có 4 nghiệm phân biệt là
A. 0 < m < 1
B. 1 < m < 2
C. 2 < m < 3
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng và . Giả sử , sao cho AB là đoạn vuông góc chung của d1 và d2. Vectơ là:
A.
B.
C.
D.
Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số cắt đường thẳng y=1-x tại hai điểm phân biệt
A.
B.
C.
D.
Cho . Tính giá trị S = a + 4b - c
A. S = 2
B. S = 3
C. S = 4
D. S = 5
Biết phương trình có z1, z2, z3 là các nghiệm, biết rằng là nghiệm của phương trình. Biết z2 có phần ảo âm. Tìm phần ảo của số phức
A. 3
B. 2
C. -2
D. -1
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P): x + (m+1)y – 2z + m = 0 và (Q): 2x – y +3 = 0 với m là tham số thực. Để mặt phẳng (P) và (Q) vuông góc thì giá trị của m bằng bao nhiêu?
A. m = -5
B. m = 1
C. m = 3
D. m = -1
Tìm tất cả các giá trị thức của tham số m để hàm số liên tục trên R
A. m=8 hoặc
B.
C.
D. m=-8 hoặc
Giả sử ta có hệ thức . Mệnh đề nào sau đây là đẳng thức đúng?
A.
B.
C.
D.
Tìm hệ số của x10 trong khai triển biểu thức
A. -240
B. 810
C. -810
D. 240
Tìm tất cả các nghiệm của phương trình là
A. hoặc
B. hoặc
C. hoặc
D. hoặc
Tính đường kính mặt cầu ngoại tiếp hình lập phương có cạnh bằng
A. 6a
B.
C.
D. 3a
Số nghiệm nguyên thỏa mãn bất phương trình là
A. 1
B. 2
C. 3
D. Vô số
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc . Hình chiếu vuông góc của S lên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Mặt phẳng (SAC) hợp với mặt phẳng (ABCD) một góc 450. Thể tích khối chóp S.ABCD bằng
A.
B.
C.
D.
Tính thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = 3x – x2 và trục hoành, quanh trục hoành
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, , , SA vuông góc với đáy và SA=a. Tính góc giữa SC và (SAB).
A. 900
B. 600
C. 450
D. 300
Cho hàm số (a khác 0) có đồ thị như hình bên. Mệnh đề nào sau đây là đúng?
A. a<0,b>0,c>0,d>0
B. a<0,b<0,c=0,d>0
C. a>0,b<0,c>0,d>0
D. a<0,b>0,c=0,d>0
Có bao nhiêu số phức z thỏa mãn ?
A. 1
B. 2
C. 3
D. 4
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và CD là:
A.
B.
C.
D. a
Trong không gian Oxyz, cho hai điểm A (0;-1;2); B (1;1;2) và đường thẳng . Biết điểm M (a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị T = a + 2b + 3c bằng:
A. 5
B. 3
C. 4
D. 10
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình có đúng một nghiệm duy nhất?
A. vô số
B. 1
C. 0
D. 2
Việt và Nam chơi cờ, trong một ván cờ, xác suất để Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau hai ván cờ
A. 0,12
B. 0,7
C. 0,9
D. 0,21
Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3,…và cứ thế tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5, …, S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100
A.
B.
C.
D.
Tìm tất cả các giá trị nguyên dương của tham số m sao cho bất phương trình sau có nghiệm .
A.
B.
C.
D.
Cho hình chóp đều S.ABCD có cạnh AB = a, góc tạo bởi (SAB) và (ABC) bằng 600. Diện tích xung quanh của hình nón đỉnh S và đường tròn đáy ngoại tiếp tam giác ABC bằng
A.
B.
C.
D.
Cho (H) là hình phẳng giới hạn bởi parabol (với ), nửa đường tròn và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Cho hình chóp S.ABC có đáy ABC vuông cân tại B với AB = a, SA = và SA (ABC). Gọi M là điểm trên cạnh AB và AM = x (0 < x < a), mặt phẳng () đi qua M và vuông góc với AB. Tìm x để diện tích thiết diện tạo bởi mặt phẳng () và hình chóp S.ABC lớn nhất
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, và SA vuông góc với mặt phẳng (ABCD). Góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 450. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số
A.
B.
C.
D.
Trong mặt phẳng tọa độ Oxy, cho điểm A (-1;3) và đường thẳng ∆ có phương trình là x – 2y + 2 = 0. Dựng hình vuông ABCD sao cho hai đỉnh B, C nằm trên ∆. Tìm tọa độ điểm C biết C có tung độ dương.
A. C (-2;0)
B. C (0;1)
C. C(2;2)
D. C(1;4)
Cho hàm số y = f(x) liên tục trên R và thỏa mãn . Biết .Tính
A.
B.
C.
D.
Trong không gian Oxyz, cho mặt phẳng , đường thẳng và điểm . Gọi ∆ là đường thẳng nằm trong mặt phẳng , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A.
B.
C.
D.
Tìm số phức z thỏa mãn và biểu thức đặt giá trị nhỏ nhất
A.
B.
C. và
D.
Cho hàm số có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M (-1;2), tính tích tất cả các phần tử của tập S
A.
B.
C.
D. -1
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm thực trên nửa khoảng (2;4].
A. 4
B. 5
C. 6
D. 7