Câu hỏi:

44 lượt xem
Tự luận

 Bài 4.24 trang 70 SGK Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(‒4; 1), B(2; 4), C(2; ‒2).

a) Giải tam giác ABC.

b) Tìm tọa độ trực tâm H của tam giác ABC.

  

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(‒4; 1), B(2; 4) (ảnh 1)

+) Theo định lí cosin, ta có:

cosA=AB2+AC2BC22.AB.AC=352+352622.35.35=5490=35

A^53°8'

Tam giác ABC có AB = AC nên tam giác ABC cân tại A

B^=C^=1800A^2180°53°8'2=63°26'.

Vậy: AB=AC=35,BC=6,A^53°8',B^=C^63°26'.

b) Giả sử trực tâm H của tam giác ABC có tọa độ là H(x; y).

Do H là trực tâm của tam giác ABC nên AHBC;BHACAHBC;BHAC

Với A(‒4; 1), B(2; 4), C(2; ‒2) và H(x; y) ta có:

AH=x+4;y1;BC=0;6;BH=x2;y4;AC=6;3

Vì AHBC nên AH.BC=0 (x + 4).0 + (y – 1).(‒6) = 0‒6.(y – 1) = 0y = 1.

Vì BHAC nên BH.AC=0Û (x – 2).6 + (y – 4).(‒3) = 0

(x – 2).2 + (y – 4).(‒1) = 0 Û 2x – y = 0.

Mà y = 1 2x1=0x=12.

Vậy toạ độ trực tâm H của tam giác ABC là H12;1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ