Câu hỏi:
29 lượt xem Tự luận
Bài 4.26 trang 70 Toán 10 Tập 1: Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M,
MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.
Lời giải
Hướng dẫn giải:
Lời giải
(Quy tắc ba điểm)
Vì G là trọng tâm tam giác ABC nên (tính chất trọng tâm tam giác)
MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.
Vậy MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.
Câu 1: