Câu hỏi:

163 lượt xem
Tự luận

 Bài 7.37 trang 59 Toán 10 Tập 2: Một cột trụ hình hyperbol (H.7.36), có chiều cao 6m, chỗ nhỏ nhất ở chính giữa và rộng 0,8m, đỉnh cột và đáy cột đều rộng 1m. Tính độ rộng của cột ở độ cao 5m (Tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).

Giải Toán 10  (Kết nối tri thức): Bài tập cuối chương 7 (ảnh 1) 

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải 

Chọn hệ trục tọa độ Oxy có gốc O là chỗ nhỏ nhất ở chính giữa, như hình vẽ sau:

Giải Toán 10  (Kết nối tri thức): Bài tập cuối chương 7 (ảnh 1) 

Gọi A1, A2 lần lượt là giao điểm của hypebol với trục hoành mà O là trung điểm của A1A2 nên A1(−0,4 ; 0),  A2(0,4 ; 0) hay a = 0,4.

Gọi phương trình hypebol của hình trụ có dạng : x20,42y2b2=1.

Gọi M là một điểm trên đỉnh cột nằm ở nhánh bên phải của trục tung hypebol. Ta có toạ độ điểm M(0,5; 3).

Vì điểm M(0,5; 3) thuộc (H) nên 0,520,4232b2=1

251632b2=1

32b2=25161=916 

⇒ b2 = 16

Do đó phương trình hypebol của hình trụ đó là: x20,42y216=1

Tại vị trí 5m thì điểm đó cách trục hoành một khoảng bằng 2m nên ta có y = 2.

Thay y = 2 vào phương trình hypebol ta được:

x20,422216=1

x20,42=2016

 x2 = 0,2 x =0,2≈±0,45

Vậy độ rộng tại vị trí có độ cao 5m xấp xỉ là: 0,45.2 = 0,9 m.