Câu hỏi:

46 lượt xem
Tự luận

HĐ 3 trang 68 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương u=x;y và v=x';y'.

a) Xác định tọa độ các điểm A và B sao cho OA=u,OB=v.

b) Tính AB2, OA2, OB2 theo tọa độ của A và B.

c) Tính OA.OB theo tọa độ của A, B.

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

a) Vì OA=u mà u=x;y nên OA=x;y suy ra A(x; y).

Vì OB=v mà v=x';y' nên OB=x';y' suy ra B(x'; y').

b) +) Ta có: A(x; y) và B(x'; y') AB=x'x;y'y

AB=x'x2+y'y2

AB2=x'x2+y'y2.

+) Ta có :

OA=x;yOA=x2+y2OA2=x2+y2.

+) Ta có: 

OB=x';y'OB=x'2+y'2OB2=x'2+y'2.

Vậy AB2=x'x2+y'y2; OA2=x2+y2 và OB2=x'2+y'2.

c) Ta có: OA.OB=OA.OB.cosOA,OB=OA.OB.cosAOB^ 

Xét tam giác OAB, theo định lí côsin ta có: 

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ