Câu hỏi:

130 lượt xem
Tự luận

Bài 2.16 trang 49 Chuyên đề Toán 11Tìm đường đi ngắn nhất từ đỉnh S đến  mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.

Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Xem đáp án

Lời giải

Hướng dẫn giải:

Đầu tiên ta gắn nhãn đỉnh S là I(S) = 0 và gắn cho ba đỉnh kề với S là A, B và C các nhãn tạm thời là I(S) + 2, I(S) + 1 và I(S) + 7. Chọn số nhỏ nhất trong chúng và viết I(B) = 1. Đỉnh B bây giờ được gắn nhãn vĩnh viễn là 1.

Tiếp theo ta gắn nhãn cho các đỉnh kề với B là A, C, D, E và F các nhãn tạm thời là I(B) + 6 (hiện A có 2 nhãn tạm thời là 2 và 7), I(B) + 5 (hiện C có hai nhãn tạm thời là 7 và 6), I(B) + 12, I(B) + 15, I(B) + 9. Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại A, C, D, E, F) hiện nay là 2 (tại A), nên ta viết I(A) = 2. Điểm A được gắn nhãn vĩnh viễn là 2.

Bây giờ ta xét các đỉnh kề với A mà chưa được gắn nhãn vĩnh viễn là D và E. Ta gắn cho đỉnh D nhãn tạm thời I(A) + 5 (hiện D có hai nhãn tạm thời là 13 và 7), gắn cho đỉnh E nhãn tạm thời I(A) + 8 (hiện E có hai nhãn tạm thời là 16 và 10). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại D và E) là 7 (tại D), nên ta viết I(D) = 7. Đỉnh D được gắn nhãn vĩnh viễn là 7.

Ta xét đỉnh E (chưa được gắn nhãn vĩnh viễn) kề với D, ta gắn nhãn tạm thời I(D) + 2 (hiện E có ba nhãn tạm thời là 16, 10 và 9). Vậy đỉnh E sẽ được gắn nhãn vĩnh viễn là 9 hay I(E) = 9.

Tiếp tục ta xét các đỉnh kề với E mà chưa được gắn nhãn vĩnh viễn là C và F. Ta gắn cho đỉnh C nhãn tạm thời I(E) + 10 (hiện C có ba nhãn tạm thời là 7, 6 và 19), gắn cho F nhãn tạm thời I(E) + 6 (hiện F có hai nhãn tạm thời là 10 và 15). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (ở C, F) hiện nay là 6 (tại C), nên ta viết I(C) = 6. Đỉnh C được gắn nhãn vĩnh viễn là 6.

Xét đỉnh kề với C là F, ta gắn cho F nhãn tạm thời I(C) + 14 (hiện F có ba nhãn tạm thời là 10, 15 và 20) nên I(F) = 10. Đỉnh F được gắn nhãn vĩnh viễn là 10.

Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Vậy, đường đi ngắn nhất từ đỉnh S đến đỉnh A là SA = 2.

Đường đi ngắn nhất từ đỉnh S đến đỉnh B là SB = 1.

Đường đi ngắn nhất từ đỉnh S đến đỉnh C có độ dài là I(C) = 6 và có đường đi là

S → B → C.

Đường đi ngắn nhất từ đỉnh S đến đỉnh D có độ dài là I(D) = 7 và đường đi là

S → A → D.

Đường đi ngắn nhất từ đỉnh S đến đỉnh E có độ dài là I(E) = 9 và đường đi là

S → A → D → E.

Đường đi ngắn nhất từ đỉnh S đến đỉnh F có độ dài là I(F) = 10 và đường đi là

S → B → F.

CÂU HỎI HOT CÙNG CHỦ ĐỀ