Bài toán tiếp tuyến của đồ thị và sự tiếp xúc của hàm số
- 1Làm xong biết đáp án, phương pháp giải chi tiết.
- 2Học sinh có thể hỏi và trao đổi lại nếu không hiểu.
- 3Xem lại lý thuyết, lưu bài tập và note lại các chú ý
- 4Biết điểm yếu và có hướng giải pháp cải thiện
A.0
B.2
C.−2
A.
B.
C.
D.
Biết đồ thị các hàm số và tiếp xúc nhau tại điểm Tìm .
A.
B.
C.
D.
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 0.
A.
B.
C.
D.
A.
B.
C.
D.
Có bao nhiêu tiếp tuyến với đồ thị đi qua gốc tọa độ O?
A.0
B.1
C.2
A. và
B. và
C. và
D. và
Giả sử tiếp tuyến của đồ thị hàm số song song với đường thẳng có dạng . Khi đó tổng là:
A.15
B.−27
C.12
A.
B.
C.
D.
Cho hàm số: . Tìm điểm nằm trên đồ thị hàm số sao cho tiếp tuyến tại điểm đó có hệ số góc nhỏ nhất.
A.
B.
C.
D.
A.
B.
C.
D.
Cho hàm số Tìm điểm M thuộc (C) sao cho tiếp tuyến tại M và hai trục tọa độ tạo thành tam giác cân.
A. hoặc
B. M(2;3) hoặc M(0;1)
C. hoặc
D. M(2;3) hoặc
Cho hàm số có đồ thị hàm số (Cm). Khi tham số m thay đổi, các đồ thị (Cm) đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:
A.
B.
C.
D.
Cho hàm số Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox,Oy tương ứng tại A và B sao cho OA=2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
A.0
B.1
C.2
Tìm tất cả các giá trị của tham số m để đường thẳng cắt đồ thị (H) của hàm số tại hai điểmA, B phân biệt sao cho đạt giá trị nhỏ nhất (với là hệ số góc của tiếp tuyến tại A, B của đồ thị (H).
A.
B.
C.
D.
Cho hàm số Tìm mm để (Cm) tiếp xúc với Ox:
A.
B.
C.
D.
Gọi S là tập hợp các giá trị nguyên của m để mọi tiếp tuyến của đồ thị hàm số đều có hệ số góc dương. Số phần tử của tập S là:
A.Vô số
B.4
C.3
Cho hàm số có đồ thị là(C), Mlà điểm thuộc (C) sao cho tiếp tuyến của (C) tại Mcắt hai đường tiệm cận của (C) tại hai điểm A, B thỏa mãn . Gọi S là tổng các hoành độ của tất cả các điểm Mthỏa mãn bài toán. Tìm giá trị của S.
A.6
B.5
C.8
Tìm tập hợp S tất cả các giá trị của tham số thực m để đồ thị hàm số có ba điểm cực trị đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành một tứ giác nội tiếp.
A.
B.
C.
D.
Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất
A.
B.
C.
D.
Cho hàm số có đồ thị hàm số (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt thỏa mãn ?
A.3
B.0
C.1