Câu hỏi:

157 lượt xem
Tự luận

Cho tam giác ABC có BC = 20 cm, ABC^=22°,  ACB^=30°.

a) Tính khoảng cách từ điểm B đến đường thẳng AC.

b) Tính các cạnh và các góc còn lại của tam giác ABC.

c) Tính khoảng cách từ điểm A đến đường thẳng BC.

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Gọi BH là đường cao hạ từ B xuống AC.

Bài 2 trang 71 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Khi đó, BH là khoảng cách từ điểm B đến đường thẳng AC.

Xét tam giác BHC có ACH^=30° , ta có:

BH = BC . sin 30° = 20 . sin 30° = 10 (cm).

Vậy khoảng cách từ điểm B đến đường thẳng AC là 10 cm.

b) Xét tam giác ABC, ta có: ABC^+ACB^+BAC^=180° .

Suy ra BAC^=180°ABC^ACB^=180°30°22°=128°.

Ta có BAH^=180°BAC^=180°128°=52°.

Xét tam giác ABH vuông tại H có BAH^=52°  nên

•  AB  .  sinBAH^=10 suy ra AB=BHsinBAH^=10sin52°12,7  (cm) .

 AH  .  tanBAH^=10  suy ra AH=BHtanBAH^=10tan52°7,8  (cm) .

Áp dụng định lý Pythagore vào tam giác BHC, ta có: BC2 = CH 2 + BH2

Suy ra CH=BC2BH2=202102=103  (cm) .

Do đó AC=CHAH1037,89,5  (cm) .

Vậy độ dài các cạnh và các góc còn lại của tam giác ABC là BAC^=128° , AB ≈ 7,9 cm, AC ≈ 9,5 cm.

c) Gọi AK là đường cao hạ từ A xuống BC.

Khi đó, AK là khoảng cách từ điểm A đến đường thẳng BC.

Bài 2 trang 71 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét tam giác ACK có ACK^=30°  và AC ≈ 9,5 cm nên ta có:

AK=AC  .  sinACK^9,5  .  sin30°4,8  (cm)

Vậy khoảng cách từ điểm A đến đường thẳng BC khoảng 4,8 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ