Câu hỏi:

42 lượt xem
Tự luận

Bài 4.35 trang 72 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(‒2; 5) và C(‒5; 2).

a) Tìm tọa độ của các vectơ BA và BC.

b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

a) Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có: BA=4;4 và BC=3;3.

b) Ta có: 

BA.BC=4.3+4.3=12+12=0

BABC

BABC

ΔABC vuông tại B.

Do BA=4;4BA=42+42=42;

BC=3;3BC=32+32=32.

Với A(2; 1) và C(‒5; 2) ta có:

AC=7;1AC=72+12=50=52 

Diện tích tam giác vuông ABC là:

SΔABC=12.AB.BC=12.42.32=12 (đơn vị diện tích)

Chu vi tam giác ABC là:

AB + BC + AC = 42+32+52=122 (đơn vị độ dài)

c)  Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có tọa độ trọng tâm G của tam giác ABC là:

xG=2+2+53=53yG=1+5+23=83G53;83

Vậy tọa độ trọng tâm của tam giác ABC là: G53;83.

d)

Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(‒2; 5) và C(‒5; 2) (ảnh 1)

Để tứ giác BCAD là hình bình hành thì AC=DB

Giả sử D(x; y) là điểm cần tìm.

Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có: AC=7;1 và DB=2x;5y 

Do đó AC=DB

2x=75y=1x=5y=4D5;4.

Vậy với D(5;4) thì tứ giác BCAD là một hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ