Câu hỏi:

40 lượt xem
Tự luận

Bài 4.36 trang 72 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 4), C(‒1; ‒2) và D(6; 5).

a) Tìm tọa độ của các vectơ AB và CD.

b) Hãy giải thích tại sao các vectơ AB và CD cùng phương.

c) Giả sử E là điểm có tọa độ (a; 1). Tìm a để vectơ AC và BE cùng phương.

d) Với a tìm được, hãy biểu thị vectơ AE theo các vectơ AB và AC.

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

a) Với A(1; 2), B(3; 4), C(‒1; ‒2) và D(6; 5) ta có: AB=2;2 và CD=7;7.

b) Xét hai vectơ AB=2;2 và CD=7;7:

Ta có: 72=72 nên hai vectơ AB và CD cùng phương.

Vậy hai vectơ AB và CD cùng phương.

c) Với A(1; 2), B(3; 4), C(‒1; ‒2) và E(a; 1) ta có: AC=2;4 và BE=a3;3

Hai vectơ AC và BE cùng phương khi và chỉ khi a32=34 

 (‒ 4).(a – 3) = (‒3). (‒2)

 ‒ 4a + 12 = 6

 4a = 6

a=32.

Vậy a=32 thì hai vectơ AC và BE cùng phương.

d) Với a=32E32;1

Với A(1; 2) và E32;1 AE=12;1 

Ta có: AB=2;2 và AC=2;4

Tồn tại hai số thực m và n thỏa mãn: AE=mAB+nAC

12=m.2+n.21=m.2+n.42m2n=122m4n=1m=1n=34

AE=AB+34AC

Vậy AE=AB+34AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ