Câu hỏi:

88 lượt xem
Tự luận

Một người đứng ở vị trí B trên bờ sông muốn sử dụng la bàn để ước lượng khoảng cách từ vị trí đó đến một vị trí A ở trên một cù lao giữa dòng sông. Người đó đã làm như sau:

– Sử dụng la bàn, xác định được phương BA lệch với phương Nam – Bắc về hướng Đông 52°.

– Người đó di chuyển đến vị trí C, cách B một khoảng là 187 m. Sử dụng la bàn, xác định được phương CA lệch với phương Nam – Bắc về hướng Tây 27°; CB lệch với phương Nam – Bắc về hướng Tây 70° (Hình 42).

Bài 4 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Em hãy giúp người đó tính khoảng cách AB từ những dữ liệu trên (làm tròn kết quả đến hàng đơn vị của mét).

Xem đáp án

Lời giải

Hướng dẫn giải:

Bài 4 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Kẻ AA’ (A’ ∈ BC) theo phương Bắc – Nam và kẻ BB’, CC’ theo phương Nam – Bắc (hình vẽ). Khi đó AA’ // BB’ // CC’.

Phương BA lệch với phương Nam – Bắc về hướng Đông 52° nên B'BA^=52°.

Phương CA lệch với phương Nam – Bắc về hướng Tây 27° nên ACC'^=27°.

Phương CB lệch với phương Nam – Bắc về hướng Tây 70° nên BCC'^=70°.

Do đó BCA^=BCC'^ACC'^=70°27°=43°.

Kẻ BH ⊥ AC (H ∈ AC).

Xét ∆BCH vuông tại H, ta có: BH = BC.sinBCH^ = 187.sin43o (m).

Vì AA’ // BB’ nên B'BA^=BAA'^=52° (hai góc so le trong).

Vì AA’ // CC’ nên A'AB^=ACC'^=27° (hai góc so le trong).

Do đó BAC^=BAA'^+A'AC^=52°+27°=79°.

Xét ∆ABH vuông tại H, ta có:

BH = AB.sinBAH^, suy ra AB = BHsinBAH^=187sin43°sin79°130(m).

Vậy khoảng cách AB khoảng 130 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ