Câu hỏi:

83 lượt xem
Tự luận

 Bài 7.16 trang 47 Toán 10 Tập 2:

Trong mặt phẳng toạ độ cho tam giác ABC, với A(6; –2); B(4; 2), C(5; –5). Viết phương trình đường tròn ngoại tiếp tam giác đó.

  

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC.

Khi đó AIx6;y+2AI=(x6)2+(y+2)2;

BIx4;y2BI=(x4)2+(y2)2;

CIx5;y+5CI=(x5)2+(y+5)2.

Ta có AI = BI = CI = R. Từ đó ta có hệ phương trình: AI=BIBI=CI   

(x6)2+(y+2)2=(x4)2+(y2)2(x4)2+(y2)2=(x5)2+(y+5)2

(x-6)2 + (y+2)2  = (x-4)2 + (y-2)2(x-4)2  + (y-2)2=(x-5)2 + (y+5)2 

4x+8y+20=02x14y30=0

x+2y+5=0x7y15=0

Cộng 2 phương trình trong hệ trên vế theo vế ta được: –5y – 10 = 0 ⇒ y = –2

Thay y = –2 vào phương trình –x + 2y + 5 = 0 ta được: –x + 2(–2) + 5 = 0

  –x + 1 = 0 hay x = 1

Do đó tâm I (1; –2) và bán kính R = IA = (16)2+(2+2)2=5

Vậy phương trình đường tròn ngoại tiếp tam giác ABC là: (x – 1)2 + (y + 2)2 = 25

CÂU HỎI HOT CÙNG CHỦ ĐỀ