Câu hỏi:
16 lượt xemCho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM. Chứng minh rằng:
a)
b)
Lời giải
Hướng dẫn giải:
GT |
; OA = OB, OM = ON, OA > OM. |
KL |
a) b) |
a) Xét tam giác OAN và tam giác OBM có:
OA = OB (theo giả thiết);
là góc chung;
ON = OM (theo giả thiết).
Vậy (c.g.c).
b) Do B, N cùng nằm trên tia Oy, OA = OB, OM = ON và OA > OM (theo giả thiết) nên OB > ON, khi đó OB = ON + NB suy ra NB = OB – ON.
Do A, M cùng nằm trên tia Ox, OA > OM (theo giả thiết) nên OA = OM + MA suy ra MA = OA – OM.
Lại có OA = OB, OM = ON (theo giả thiết) nên OA – OM = OB – ON.
Hay MA = NB.
Từ (chứng minh ở câu a) suy ra AN = BM (hai cạnh tương ứng).
Xét tam giác AMN và tam giác BNM có:
AN = BM (chứng minh trên);
MN là cạnh chung;
MA = NB (chứng minh trên).
Vậy
Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:
a) AC = BD;
b)