Câu hỏi:
54 lượt xemCho tam giác MBC vuông tại M có = 60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều
Lời giải
Hướng dẫn giải:
GT |
|
KL |
Tam giác ABC là tam giác đều. |
Xét tam giác MBC (vuông tại M) và tam giác MAC (vuông tại M) có:
MB = MA (theo giả thiết);
MC là cạnh chung.
Vậy (hai cạnh góc vuông).
Suy ra (hai góc tương ứng)
Mà nên
.
Tam giác ABC có , theo định lí tổng ba góc trong một tam giác ta có
Suy ra hay
Do đó suy ra tam giác ABC đều.
Vậy tam giác ABC đều.
Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ
Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:
a) AC = BD;
b)