Câu hỏi:

35 lượt xem
Tự luận

Cho Hình 4.56, biết AB = CD, BAC^ = BDC^ = 90°. Chứng minh rằng ΔABE=ΔDCE

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

AB = CD, BAC^=BDC^=90°.

KL

ΔABE=ΔDCE. 

Tài liệu VietJack

Chứng minh (hình vẽ trên):

Theo giả thiết BAC^=BDC^=90° ta có tam giác ABE vuông tại A và tam giác DCE vuông tại D.

Tam giác ABE vuông tại A nên hai góc nhọn của tam giác phụ nhau.

Tức là ABE^+AEB^=90° suy ra ABE^=90°AEB^.

Tam giác DCE vuông tại D nên hai góc nhọn của tam giác phụ nhau.

Tức là DCE^+DEC^=90° suy ra DCE^=90°DEC^.

Mà AEB^=DEC^ (hai góc đối đỉnh).

Do đó 90°AEB^=90°DEC^ hay ABE^=DCE^.

Xét tam giác ABE (vuông tại A) và tam giác DCE (vuông tại D) có:

AB = DC (theo giả thiết);

ABE^=DCE^(chứng minh trên).

Vậy ΔABE=ΔDCE (cạnh góc vuông – góc nhọn kề).

CÂU HỎI HOT CÙNG CHỦ ĐỀ