Câu hỏi:

134 lượt xem

Một chất điểm dao động điều hòa theo hàm cosin có gia tốc biểu diễn như hình vẽ sau. Phương trình dao động của vật là

x=20cos(πt+π2)(cm)x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}.
x=10cos(πt+π4)(cm)x = 10c{\rm{os}}(\pi t + \frac{\pi }{4}){\rm{ (cm)}}.
x= 20cos(πtπ2)(cm)x =  - 20c{\rm{os}}(\pi t - \frac{\pi }{2}){\rm{ (cm)}}.
x= 10cos(πt+π3)(cm)x =  - 10c{\rm{os}}(\pi t + \frac{\pi }{3}){\rm{ (cm)}}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Đáp án đúng là A

Gọi phương trình dao động của vật có dạng: x=Acos(ωt+φ)x = Ac{\rm{os}}(\omega t + \varphi )

Khi đó phương trình vận tốc và gia tốc có biểu thức lần lượt là:

v= Aωsin(ωt+φ)v =  - A\omega \sin (\omega t + \varphi )

a= Aω2cos(ωt+φ)a =  - A{\omega ^2}c{\rm{os}}(\omega t + \varphi )

Từ đồ thị, ta có:

+ Theo trục hoành ta có thời gian để có một hình sin là 2(s)  \Rightarrow  Chu kì của dao động:

T=2sω =2πT=2π2π(rad/s)T = 2s \Rightarrow \omega  = \frac{{2\pi }}{T} = \frac{{2\pi }}{2}\pi {\rm{ (rad/s)}}

+ Theo trục tung ta có gia tốc đạt giá trị lớn nhất là 2m/s22{\rm{ m/}}{{\rm{s}}^2}:

 amax=Aω2A=amaxω2=200π2=20cm{a_{ma{\rm{x}}}} = A{\omega ^2} \Rightarrow A = \frac{{{a_{ma{\rm{x}}}}}}{{{\omega ^2}}} = \frac{{200}}{{{\pi ^2}}} = 20cm

+ Khi t = 0 thì a = 0 và gia tốc đang tăng  \Rightarrow li độ x = 0 và đang đi theo chiều âm (vì x và a ngược pha)  \Rightarrow  Pha ban đầu của x là: φ =π2\varphi  = \frac{\pi }{2}(rad)

Vậy phương trình dao động của vật là: x=20cos(πt+π2)(cm)x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}

CÂU HỎI HOT CÙNG CHỦ ĐỀ